
7.0

LANGUAGE GUIDE

• LANGUAGE DEFINITION

• STANDARD UNITS

• MEMORY MANAGEMENT

• ASSEMBLY LANGUAGE

B 0 R L 'A N D

Turbo Pasca/®

Version 7.0

Language Guide

BORLAND INTERNATIONAL INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001, scons VALLEY, CA 95067-0001

Rl

Copyright © 1983, 1992 by Borland International. All rights
reserved. All Borland products are trademarks or registered
trademarks of Borland International, Inc. Windows, as used in this
manual, shall refer to Microsoft's implementation of a windows
system. Other brand and product names are trademarks or
registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8

c o N T

Introduction 1
What's in this manual 2

Part 1 The Turbo Pascal language

Chapter 1 What is a Turbo Pascal
progrnm? 5

A Turbo Pascal program 5
Procedures and functions 6
Statements 8
Expressions 9
Tokens 10
Types, variables, constants, and typed
constants 10
Putting it all together 11
Units 13
Syntax diagrams 14

Chapter 2 Tokens 15
Special symbols .. 15
Reserved words and standard directives. 16
Identifiers .. 17
Numbers 18
Labels 19
Character strings .. 19
Comments 20
Program lines 20

Chapter 3 Constants 21

Chapter 4 Types 23
Simple types 23

Ordinaltypes 24
Integertypes 25
Boolean types 25
Char type 26
Enumerated types. 26
Subrange types 27

E N T s

Real types .. 28
Software floating point 29
80x87 floating point 29

String types 29
Structured types 30

Array types 30
Record types 32
Object types .. 33

Components and scope 36
Methods 37
Virtual methods 37
Dynamic methods 38
Instantiating objects 38
Method activations 40
Qualified-method activations 41

Set types .. 42
File types 42

Pointer types 43
Type Pointer 43
Type PChar 43

Procedural types 44
Procedural values 44
Type compatibility 46

Identical and compatible types 46
Type identity .. 46
Type compatibility 47
Assignment compatibility 48

The type declaration part 49

Chapter 5 Variables and typed
constants 51

Variable declarations 51
The data segment 52
The stack segment 52
Absolute variables 53
Variable references 53

Qualifiers 54
Arrays, strings, and indexes 55
Records and field designators 55
Object component designators 56
Pointers and dynamic variables 56

Variable typecasts 57
Typed constants 58

Simple-type constants 59
String-type constants 60
Structured-type constants 60

Array-type constants 60
Record-type constants 62
Object-type constants 62
Set-type constants 63

Pointer-type constants 63
Procedural-type constants 64

Chapter 6 Expressions 65
Expression syntax 66
Opera tors .. 68

Arithmetic operators 68
Logicaloperators 69
Boolean operators 70
String opera tor 71
Character-pointer operators 71
Set opera tors 72
Relational operators 73

Comparing simple types 73
Comparing strings 74
Comparing packed strings 74
Comparing pointers 74
Comparing character pointers 74
Comparing sets 74
Testing set membership 75

The @ operator 75
@ with a variable. 75
@ with a procedure, function, or
method 75

Function calls 76
Set constructors 76
Value typecasts 77
Procedural types in expressions 78

Chapter 7 Statements 81
Simple statements. 81

Assignment statements 82
Object-type assignments 82

Procedure statements. 82
Goto statements 83

Structured statements 83
Compound statements 84
Conditional statements 84

If statements 84
Case statements 85

Repetitive statements 87
Repeat statements. 87
While statements 87
For statements 88

With statements 90

Chapter 8 Blocks, locality, and
scope 93

Blocks '. 93
Rules of scope 95

Block scope 95
Record scope .. 95
Object scope. .. 96
Unit scope 96

Chapter 9 Procedures and functions 97
Procedure declarations 97

Near and far declarations 98
Interrupt declarations 99
Forward declarations 99
External declarations 100
Assembler declarations 101
Inline declarations 101

Function declarations 101
Method declarations 103

Constructors and destructors 104
Constructor-error recovery 106

Parameters 107
Value parameters 108
Constant parameters 109
Variable parameters 109
Untyped parameters 110
Open parameters 111

Open-string parameters 111
Open-array parameters 113

Dynamic object-type variables 114

Chapter 10 Programs and units 117
Program syntax. 117

The program heading 117
The uses clause 117

Unit syntax 118
The unit heading 118
The interface part 119
The implementation part 119
The initialization part. 120
Indirect unit references 120
Circular unit references 121

Sharing other declarations 123

Part 2 The run-time library

Chapter 11 Overview of the run-time
library 127

Chapter 12 Standard procedures and
functions 129

Flow-control procedures 130
Transfer functions 130
Arithmetic functions 130
Ordinal procedures and functions. 131
String procedures and functions .. 131
Dynamic-allocation procedures and
functions 132
Pointer and address functions 132
Miscellaneous routines 133
Predeclared variables 133

Chapter 13 Input and output 135
File input and output 136

Text files .. 137
Untyped files 139
The FileMode variable 139

Devices in Turbo Pascal 140
DOS devices 140

The CON device 140
The LPTl, LPT2, and LPT3 devices. 141
The COM1 and COM2 devices 141

iii

The NUL device 141
Text-file devices 141

Input and output with the Crt unit 142
U sing the Crt unit 142
Windows 142

Special characters 143
Line input 143

Crt procedures and functions 144
Crt unit constants and variables 145

Text-file device drivers 146
The Open function 147
The InOut function 147
The Flush function 147
The Close function 148

Chapter 14 Using the SOx8? 149
The 80x87 data types 151
Extended range arithmetic 152
Comparing reals 153
The 80x87 evaluation stack 153
Writing reals with the 80x87 155
Units using the 80x87 155

Detecting the 80x87 155
Emulation in assembly language 157

Chapter 15 Interfacing with DOS 159
Dos unit procedures and functions 160
Dos unit constants, types, and
variables. 162

Constants .. 162
Types 163

Variables 163
WinDos unit procedures and functions . 163
WinDos unit constants, types, and
variables .. 165

Constants .. 165
Types 166
Variables 166

Chapter 16 Using null-terminated
strings 167

What is a null-terminated string? 167
Strings unit functions 167
Using null-terminated strings 169

Character pointers and string literals . 169

Character pointers and character
arrays 171
Character pointer indexing 171
Null-terminated strings and standard
procedures 173
An example using string-handling
functions 173

Chapter 17 Using the Borland
Graphics Interface 175

Drivers 175
IBM 8514 support , 176
Coordinate system 177

Current pointer .. 178
Text 178
Figures and styles. 179

Viewports and bit images 179
Paging and colors 180
Error handling 180
Getting started 181

Heap management routines 183
Graph procedures and functions 185
Graph unit constants, types, and
variables. .. 188

Constants 188
Types 189
Variables 189

Chapter 18 Using overlays 191
The overlay manager 192

Overlay buffer management. 193
Overlay procedures and functions 195
Variables and constants 196

Result codes .. 196
Designing overlaid programs 197

Overlay code generation 197
The far call requirement 197
Initializing the overlay manager 198
Initialization sections 201
What not to overlay 202
Debugging overlays 202
External routines in overlays 203

Installing an overlay-read function 204
Overlays in .EXE files 205

iv

Part 3 Inside Turbo Pascal

Chapter 19 Memory issues 209
The Turbo Pascal memory map 209
The heap manager 211

Disposal methods 212
The free list 215
The HeapError variable 217

Internal data formats 218
Integer types 218
Char types 218
Boolean types 218
Enumerated types. 219
Floating-point types. 219

The Real type 219
The Single type 220
The Double type 220
The Extended type 220
The Comp type 221

Pointer types 221
String types 221
Set types 221
Array types 222
Record types 222
Object types .. 222

Virtual method tables 223
Dynamic method tables 225

File types 228
Procedural types 230

Direct memory access 230
Direct port access 231

Chapter 20 Control issues 233
Calling conventions 233

Variable parameters 234
, Value parameters 234
Open parameters ,. 235
Function results 235
NEAR and FAR calls 236
Nested procedures and functions ... 236
Method calling conventions 237
Virtual method calls 238
Dynamic method calls 239
Constructors and destructors 240

Entry and exit code 240
Register-saving conventions 241

Exit procedures .. 241
Interrupt handling 243

Writing interrupt procedures 243

Chapter 21 Optimizing your code 245
Constantfolding 245
Constant merging 246
Short-circuit evaluation 246
Constant parameters 246
Redundant pointer-load elimination ... 247
Constant set inlining 247
Small sets .. 248
Order of evaluation 248
Range checking .. 249
Shift instead of multiply or divide 249
Automatic word alignment 249
Eliminating dead code 250
Smart linking .. 250

Part 4 Using Turbo Pascal with
assembly language

Chapter 22 The built-in assembler 255
The asm statement 256

Register use 256
Assembler statement syntax 256

Labels 257

v

Instruction opcodes 257
RET instruction sizing 258
Automatic jump sizing 258

Assembler directives 259
Operands 261

Expressions 262
Differences between Pascal and
Assembler expressions. 262
Expression elements 263

Constants .. 263
Numeric constants 263
String constants 264

Registers 265
Symbols 265

Expression classes 269
Expression types 270
Expression operators 272

Assembler procedures and functions .. 274

Chapter 23 Linking assembler code 279
Turbo Assembler and Turbo Pascal 280
Examples of assembly language
routines 281
Assembly language methods 283
Inline machine code 284

Inline statements 284
Inline directives 285

Index 287

T A B

·2.1: Turbo Pascal reserved words 16
2.2: Turbo Pascal directives 17
4.1: Predefined integer types 25
4.2: Real data types 28
6.1: Precedence of operators 65
6.2: Binary arithmetic operations 68
6.3: Unary arithmetic operations 69
6.4: Logical operations 70
6.5: Boolean operations .. · 70
6.6: String operation 71
6.7: Permitted PChar constructs 72
6.8: Set operations 72
6.9: Relational operations 73
12.1: Flow-control procedures 130
12.2: Transfer functions 130
12.3: Arithmetic functions 130
12.4: Ordinal procedures and functions .131
12.5: String procedures and functions ... 131
12.6: Dynamic-allocation procedures and

functions 132
12.7: Pointer and address functions 132
12.8: Miscellaneous procedures and

functions 133
12.9: Predeclared variables in the System

unit 133
13.1: Input and output procedures and

functions 135
13.2: Control characters 143
13.3: Line input editing keys 143
13.4: Crt unit procedures and functions .144
13.5: Crt unit constants 145
13.6: Crt unit variables 145
14.1: Test8087 variable values 157
15.1: Dos unit date and time procedures .160
15.2: Dos unit interrupt support

procedures 160

vi

L E s

15.3: Dos unit disk status functions 161
15.4: Dos unit file-handling procedures

and functions 161
15.5: Dos unit environment-handling

functions 161
15.6: Dos unit process-handling

procedures 161
15.7: Dos unit miscellaneous procedures

and functions 162
15.8: Dos unit constants 162
15.9: Dos unit types 163
15.10: WinDos date and time

procedures ~163
15.11: WinDos unit interrupt support

procedures 164
15.12: WinDos unit disk status functions .164
15.13: File-handling procedures and

functions 164
15.14: WinDos unit directory-handling

procedures and functions 165
15.15: WinDos unit environment-handling

functions 165
15.16: WinDos unit miscellaneous

procedures and functions 165
15.17: WinDos constants 166
15.18: WinDos unit types 166
16.1: Strings unit functions 168
17.1: BGI drivers 176
17.2: Graph unit procedures and

functions 185
17.3: Graph unit constant groups 188
17.4: Graph unit types 189
18.1: Overlay unit procedures and

functions 196
18.2: Overlay unit variables 196
22.1: Built-in assembler reserved words .261

22.2: String examples and their values .. 265 22.6: Summary of built-in asssembler
22.3: CPU registers 265 expression operators 272
22.4: Values, classes, and types of 22.7: Definitions of built-in assembler

symbols 267 expression operators 273
22.5: Predefined type symbols 272

vii

F G u

1.1: Procedure or function diagram 6
1.2: Simple Pascal program diagram 7
1.3: Statement diagram 10
1.4: An expanded Pascal program 12
17.1: Screen with xy-coordinates 177
18.1: Loading and disposing of overlays .194
19.1: Turbo Pascal memory map 210
19.2: Disposal method using Mark and

Release 212
19.3: Heap layout with Release(P)

executed 213

viii

R E s

19.4: Creating a "hole" in the heap 214
19.5: Enlarging the free block 214
19.6: Releasing the free block 215
19.7: Layouts of instances of TLocation,

TPoint, and TCircle 223
19.8: TPoint and TCircle's VMT layouts .225
19.9: TBase's VMT and DMT layouts 227
19.10: TDerived's VMT and DMT

layouts 228

N T R

Read the Introduction in the
User's Guide for an overview

of the entire Turbo Pascal
documentation set and how

to use the Turbo Pascal
manuals most effectively.

Introduction

o D u c T o

This manual is about the Turbo Pascal language. It

• Presents the formal definition of the Turbo Pascal language

• Introduces the run-time library and tells you how to use the
units that make it up

• Describes what goes on inside Turbo Pascal in regards to
memory, data formats, calling conventions, input and output,
and automatic optimizations

• Explains how to use Turbo Pascal with assembly language

You'll find this manual most useful if you are an experienced
Pascal programmer.

Read the User's Guide if

• You want to know how to install Turbo Pascal

N

• You've used Turbo Pascal before and you want to know what is
new in this release

• You're not familiar with Borland's integrated development
environment (the IDE)

• You want to know how to use the integrated debugger

• You want to refresh your knowledge about pointers

• You are new to object-oriented programming

Read the Programmer's Reference to look up reference material on

• The run-time library
• Compiler directives
• Error messages
• The command-line compiler
• The editor

What's in this manual

2

This book is split into four parts: language grammar, the run-time
library, advanced programming issues, and using assembly
language with Turbo Pascal.

Part I, "The Turbo Pascal language," defines the Turbo Pascal
language. First you're introduced to the overall structure of a
Turbo Pascal program; then you examine each element of a
program in detail.

Part II, "The run-time library," contains information about using
all the standard units: the System, Dos, WinDos, Strings, Crt,
Overlay, and Graph units.

Part III, "Inside Turbo Pascal," presents technical information for
advanced users about

• How Turbo Pascal uses memory
• How Turbo Pascal implements program control
• Using the 80x87
• Optimizing your code

Part IV, "Using Turbo Pascal with assembly language," explains
how to use the built-in assembler and how to link your Turbo
Pascal programs with code written in Turbo Assembler.

Language Guide

p A R T

1

The Turbo Pasca//anguage

3

4 Language Guide

c H A p T E R

1

What is a Turbo Pascal program?

The next several chapters present the formal definition of the
Turbo Pascal language. Each chapter discusses an element of
Turbo Pascal. Together, these elements make up a Turbo Pascal
program.

It's difficult to gain an understanding of the whole by examining
only the parts, however. This chapter presents an overview of a
Turbo Pascal program and omits the details. It gives you a brief
description of each of the elements of a program and then shows
you how they all fit together. You can then refer to Chapters 2
through 10 to find the details of the language.

A Turbo Pascal program

In its simplest form, a Turbo Pascal program is made up of a
program heading, which names the program, and the main program
block, which accomplishes the purpose of the program. Within the
main program block is a section of code that occurs between two
key words: begin and end. Here is a very simple program that
illustrates these concepts:

program Welcome;
begin

Writeln('Welcome to Turbo Pascal');
end.

Chapter 1, What is a Turbo Pascal program? 5

The first line is the program heading, which names the program.
The remainder of the program is the code that starts with begin
and stops with end. Although this particular code section contains
only one line, it could contain many. In any Turbo Pascal
program, all the action occurs between begin and end.

Procedures and functions

6

Figure 1.1
Procedure or function

diagram

The code between the last begin and end in a program drives the
logic of the program. In a very simple program, this section of
code might be all you need. In larger, more complex programs,
putting all your code here can make your program harder to read
and understand-and more difficult to develop.

Procedures and functions let you divide the logic of a program into
smaller, more manageable chunks, and are similar to subroutines
in some other languages. All the action in a procedure or function
occurs in the code between its begin and end just like in the main
program block. Each of these segments of code performs a small,
discrete task.

Procedure or function

Procedure or function heading

Procedure or function block

begin

!.L09iC

end;

If you find your program does the same thing many times, you
might want to put the logic into a procedure or function. You
write the code in a procedure or function once and your program
can use it as often as necessary.

Here is an example of a function. This GetNumber function gets a
number from the user:

Language Guide

Figure 1.2
Simple Pascal program

diagram

function GetNumber: Reali
var

Response: Reali
begin

Write('Enter a number: ') i
Readln(Response)i
GetNumber := Responsei

endi

A procedure or function must appear before the main code
section in the main program block. The main code section can
then use the procedure or function.

Pascal program

Program heading

Main program block

I Procedures or functions (0 or more)

begin

I Main program logic

end.

The following example is an outline of a program that uses the
GetNumber function. The programmer has divided the logic of this
program into three tasks:

1. Get a number from the user.

2. Perform the necessary calculations with the user-supplied
number.

3. Print a report.

The main logic of the program is found between the last begin
and end.

Chapter 1, What is a Turbo Pascal program? 7

Statements

8

program Report;

var
A: Real;

{more declarations}

function GetNumber: Real;
var

Response: Real;
begin

Write{'Enter a number: ');
Readln{Response);
GetNumber := Response;

end;

procedure Calculate{X: Real);

procedure PrintReport;

begin
A := GetNumber;
Calculate (A) ;
PrintReport;

end.

The primary logic in this program is very simple to understand.
All the details are hidden within the bodies of the procedures and
functions. Using procedures and functions encourages you to
think about your program in a logical, modular way.

The code section between begin and end contains statements that
describe the actions the program can take and is called the
statement part. These are examples of statements:

A := B + C;

Calculate {Length, Height);

if X < 2 then
Answer := X * Y;

begin
X := 3;
Y := 4;
Z : = 5;

end;

{Assign a value}

{Activate a procedure}

{Conditional statement}

{Compound statement}

Language Guide

Expressions

while not EOF(InFile) do
begin

Readln(InFile, Line);
Process(Line);

end;

{Repetitive statement}

Simple statements can either assign a value, activate a procedure
or function, or transfer the running of the program to another
statement in the code. The first two examples shown in the
examples are simple statements.

Structured statements can be compound statements that contain
multiple statements, conditional and repetitive statements that
control the flow of logic within a program, and with statements
that simplify access to data in a record.

You might compare a Pascal statement to a sentence in a human
language such as English, Danish, or Greek. Simple Pascal
statements and simple human sentences hold one complete
thought. Structured Pascal statements and complex sentences
contain more complicated logic.

Just as a sentence is made up of phrases, so is a Pascal statement
made up of expressions. The phrases of a sentence are made up of
words, and the expressions of a statement are composed of ele­
ments called factors and operators. Expressions usually compare
things or perform arithmetic, logical, or Boolean operations.

Just as phrases in a human language can be made up of smaller
phrases, so can expressions in Pascal be made up of simpler
expressions. You can read about all the combinations of factors
and operators in Chapter 6 that make up expressions. They can be
quite complex. For now, it might help to see some examples of
expressions:

x + Y
Done <> Error
I <= Length
-x

Chapter 1, What is a Turbo Pascal program? 9

Tokens

Figure 1.3
Statement diagram

Tokens are the smallest meaningful elements in a Pascal program.
They make up the factors and operators of expressions. Tokens
are special symbols, reserved words, identifiers, labels, numbers,
and string constants; they are akin to the words and punctuation
of a written human language. These are examples of Pascal
tokens:

function

Calculate
9

{reserved word}
{special symbol}
{special symbol}
{identifier for a procedure}
{number}

Here is an illustration of a statement. You can see that statements
are made up of expressions, which are made up of tokens.

Statements (1 or more)

Expressions (1 or more)

Tokens (1 or more)

Types, variables, constants, and typed constants

10

A variable can hold a value that can change. Every variable must
have a type. A variable's type specifies the set of values the
variable can have.

For example, this program declares that variables X and Yare of
type Integer; therefore, the only values X and Y can contain are
integers, which are whole numbers. Turbo Pascal displays an
error message if your program tries to assign any other type of
value to these variables.

Language Guide

program Example;

const

var

A = 12;
B: Integer = 23;

X, Y: Integer;
J: Real;

begin
X := 7;
Y := 8;
X := Y + Y;
B := 57;
J := 0.075;

end.

{Constant A never changes in value}
{Typed constant B gets an initial value}

{Variables X and Yare type Integer}
{Variable J is type Real}

{Variable X is assigned a value}
{Variable Y is assigned a value}
{The value of variable X changes}
{Typed constant B gets a new value}
{Variable J gets a floating-point value}

In this simple and not very useful program, X is assigned the
value 7 originally; two statements later it is assigned a new value,
Y + Y. The value of a variable can vary.

A is a constant. The program gives it a value of 12 and this value
can't change-its value remains constant throughout the
program.

B is a typed constant. It's given a value when it's declared, but it's
also given a type of Integer. You can think of a typed constant as a
variable with an initial value. The program can later change the
initial value of B to some other value.

The part of this program that declares the constants and variables
is called the declaration part.

If you'll look back at the code example on page 7, you'll see that
the function GetNumber has a declaration part that declares a
variable. Procedures and functions can contain a declaration part
just as a program or unit can.

Putting it all together

Now that you've been introduced to the primary components of a
Turbo Pascal program, you need to see how they all fit together.
Here's an illustration of a Turbo Pascal program:

Chapter 7, What is a Turbo Pascal program? 11

12

Figure 1.4
An expanded Pascal

program
Pascal program

Program heading

Uses clause (optional)

Main program block

Declarations

Procedures or functions (0 or more)

Procedure or function heading

begin

Statements (1 or more)

end.

The program heading, the optional uses clause (we'll talk about
this in the next section), and the main program block make up a
Pascal program. Within the main program block can exist the
smaller blocks of procedures and functions. Although the
diagram doesn't show this, procedures and functions can be
nested within other procedures and functions. In other words,
blocks can contain other blocks.

Combined with other tokens and blank spaces, tokens make up
expressions which make up statements.

Language Guide

Units

In turn, statements combined with declaration parts make up
blocks, either the main program block or a block in a procedure or
function.

A Turbo Pa,scal program can use blocks of code in separate
modules called units. You can think of a unit as a mini-program
your application can use. Like a program, it has a heading, called
a unit heading, and a main block that contains a code section
delineated by begin and end.

Any Turbo Pascal main program block can include a line that
enables the program to use one or more units. For example, if you
are writing a program called Colors and you want to change the
color of the text as it appears on your screen, you can specify that
your program use the standard Crt unit that is part of the Turbo
Pascal run-time library:

program Colors;
uses Crt;
begin

end.

The uses Crt line tells Turbo Pascal to include the Crt unit in the
executable program. The Crt unit contains all the necessary code
to change the color of the text in your program, among other
things. Simply by including uses Crt, your program can use all
the procedures and functions in the Crt unit. If you put all the
code required to create the functionality of the Crt unit within
your program, it would be a lot more work, and it would
sidetrack you from the main purpose of your program.

Turbo Pascal's run-time library includes several units you'll find
useful. For example, use the Dos unit and your program has
access to several operating system and file-handling routines.

You can also write your own units. Use them to divide large
programs into logically related modules. Code you place in a unit
can be used by any program. You only have to write the code
once, then you can use it many times.

Chapter 7, What is a Turbo Pascal program? 13

Syntax diagrams

14

As you read Chapters 2 through 10, which define the Turbo
Pascal language, you'll encounter syntax diagrams. For example,

formal parameter list

To read a syntax diagram, follow the arrows. Frequently, more
than one path is possible. The above diagram indicates that a
formal parameter list is optional in a procedure heading. You can
follow the path from the identifier to the end of the procedure
heading, or you can follow it to the formal parameter list before
reaching the end.

The names in boxes stand for constructions. Those in circles­
reserved words, operators, and punctuation-are the actual terms
used in the program; they are boldfaced in the diagrams.

Language Guide

c H

Separators can't be part of
tokens except in string

constants.

Special symbols

Chapter 2, Tokens

A p T E R

2

Tokens

Tokens are the smallest meaningful units of text in a Pascal
program. They are categorized as special symbols, identifiers,
labels, numbers, and string constants.

A Pascal program is made up of tokens and separators. A
separator is either a blank or a comment. Two adjacent tokens
must be separated by one or more separators if each token is a
reserved word, an identifier, a label, or a number.

Turbo Pascal uses the following subsets of the ASCII character set:

• Letters-the English alphabet, A through Z and a through z

• Digits-the Arabic numerals a through 9

• Hex digits-the Arabic numerals a through 9, the letters A
through F, and the letters a through f

• Blanks-the space character (ASCII 32) and all ASCII control
characters (ASCII a through 31), including the end-of-line or
return character (ASCII 13)

These are the syntax diagrams for letter, digit, and hex digit:

15

digit -----.-----,

¢ ... ~

hex digit 4 digiti I $... cp A··· F

•

Special symbols are characters that have one or more fixed
meanings.

The following single characters are special symbols:

+ _ * / = < > [] ., () : ; 'A @ { } $#

These character pairs are also special symbols:

<= >= := .. (* *) (. .)

A left bracket ([) is equivalent to the character pair of left
parenthesis and a period-(., and a right bracket (]) is equivalent
to the character pair of a period and a right parenthesis-.).
Likewise, a left brace ({) is equivalent to the character pair of left
parenthesis and an asterisk-(*, and a right brace 0) is equivalent
to the character pair of an asterisk and a right parenthesis-*).

Reserved words and standard directives

Reserved words can'f be
redefined.

Table 2.1
Turbo Pascal reserved words

16

Reserved words appear in boldface throughout this manual.
Turbo Pascal is not case sensitive, however, so you can use either
uppercase or lowercase letters in your programs.

Following are Turbo Pascal's reserved words:

and file not then
array for object to
asm function of type
begin goto or unit
case if packed until
const implementation procedure uses
constructor in program var
destructor inherited record while
div inline repeat with
do interface set xor
downto label shl
else mod shr
end nil string

Language Guide

Table 2,2
Turbo Pascal directives

Identifiers

Units are described in
Chapter 5 of the User's Guide
and Chapter 10 of this book.

Chapter 2, Tokens

The following are Turbo Pascal's standard (built-in) directives.
Directives are used only in contexts where user-defined identifiers
can't occur. Unlike reserved words, you can redefine standard
directives, but we advise that you don't.

absolute
assembler
external

far
forward
interrupt

near
private
public

private and public act as reserved words within object type
declarations, but are otherwise treated as directives.

Identifiers denote constants, types, variables, procedures,
functions, units, programs, and fields in records.

virtual

An identifier can be of any length, but only the first 63 characters
are significant. An identifier must begin with a letter or an under­
score character U and can't contain spaces. Letters, digits, and
underscore characters (ASCII $5F) are allowed after the first char­
acter. Like reserved words, identifiers are not case sensitive.

When several instances of the same identifier exist, you may need
to qualify the identifier by another identifier to select a specific
instance. For example, to qualify the identifier ldent by the unit
identifier UnitName, write UnitName.Ident. The combined
identifier is called a qualified identifier.

identifier

underscore -G-
qualified ~d t'f'
identifier ~

17

Numbers

18

Here are some examples of identifiers and qualified identifiers:

Writeln
Exit
Rea12String
System. MemAvail
Strings.StrLen
WinCrt.ReadText

In this manual, standard and user-defined identifiers are italicized
when they are referred to in text.

Ordinary decimal notation is used for numbers that are constants
of type Integer and Real. A hexadecimal integer constant uses a
dollar sign ($) as a prefix. Engineering notation (E or e, followed
by an exponent) is read as "times ten to the power of" in real
types. For example, 7E-2 means 7 x 10-2; 12.25e+6 or 12.25e6 both
mean 12.25 x 10+6. Syntax diagrams for writing numbers follow:

hex digit sequence -rl. hex digit tT--
digit sequence~

unsigned integer

Signw

unsigned real

digit sequence digit sequence 11--;:::========:::;-,+
scale factor

scale factor ~ Lr;i5t II digit sequence ~
~ e .

unsigned number

signed number

unsigned integer

unsigned real

L@ I unsigned number f-­
sign

Language Guide

Labels

Numbers with decimals or exponents denote real-type constants.
Other decimal numbers denote integer-type constants; they must
be within the range -2,147,483,648 to 2,147,483,647.

Hexadecimal numbers denote integer-type constants; they must
be within the range $00000000 to $FFFFFFFF. The resulting value's
sign is implied by the hexadecimal notation.

A label is a digit sequence in the range 0 to 9999. Leading zeros
are not significant. Labels are used with goto statements.

label

As an extension to Standard Pascal, Turbo Pascal also allows
identifiers to function as labels.

Character strings

Chapter 2, Tokens

A character string is a sequence of zero or more characters from
the extended ASCII character set, written on one line in the
program and enclosed by apostrophes. A character string with
nothing between the apostrophes is a null string. Two sequential
apostrophes within a character string denote a single character, an
apostrophe. For example,

'TURBO'
'You"ll see'

{ TURBO }
{ You'll see}
{ , }

{ null string }
{ a space }

As an extension to Standard Pascal, Turbo Pascal lets you embed
control characters in character strings. The # character followed by
an unsigned integer constant in the range 0 to 255 denotes a
character of the corresponding ASCII value. There must be no
separators between the # character and the integer constant.
Likewise, if several control characters are part of a character
string, there must be no separators between them. For example,

19

Comments

The compiler directives are
explained in Chapter 2 of the

Programmer's Reference.

Program lines

20

#13#10
'Line l'#13'Line2'
#7#7'Wake up!'#7#7

character string quoted string

control string

quoted string -() 10--q string character P
string character

control string -r0=l unsigned integer t-T-
A character string's length is the actual number of characters in the
string. A character string of any length is compatible with any
string type, and with the PChar type when the extended syntax is
enabled {$X+}. Also, a character string of length one is compatible
with any Char type, and a character string of length N, where N is
greater than or equal to one, is compatible with packed arrays of
N characters.

The following constructs are comments and are ignored by the
compiler:

{ Any text not containing right brace }
(* Any text not containing star/right parenthesis *)

A comment that contains a dollar sign ($) immediately after the
opening { or (* is a compiler directive. A mnemonic of the compiler
command follows the $ character.

Turbo Pascal program lines have a maximum length of 126
characters.

Language Guide

c H

Wherever Standard Pascal
allows only a simple con­

stant, Turbo Pascal allows a
constant expression.

Chapter 3, Constants

A p T E R

3

Constants

A constant declaration declares a constant within the block
containing the declaration. A constant is an identifier that holds a
value that can't change. A constant identifier can't be included in
its own declaration.

constant declaration rl identifier ~ constant ~0-r

As an extension to Standard Pascal, Turbo Pascal allows the use of
constant expressions. A constant expression is an expression that
can be evaluated by the compiler without actually executing the
program. Examples of constant expressions follow:

100
'A'

256 - 1
(2.5 + 1) (2.5 - 1)

'Turbo' + ' , + 'Pascal'
Chr (32)
Ord (, Z ') - Ord (, A') + 1

The simplest case of a constant expression is a simple constant,
such as 100 or J A'.

constant -l expression f--
Because the compiler has to be able to completely evaluate a
constant expression at compile time, the following constructs are
not allowed in constant expressions:

21

22

For expression syntax, see
Chapter 6, "Expressions."

• References to variables and typed constants (except in constant
address expressions as described on page 59)

• Function calls (except those noted in the following text)

• The address operator (@) (except in constant address
expressions as described on page 59)

Except for these restrictions, constant expressions follow the same
syntactical rules as ordinary expressions.

The following standard functions are allowed in constant
expressions:

Abs High Low Pred SizeD!
Chr Length Odd Ptr Succ
Hi La Ord Round Swap

Trunc

Here are some examples of the use of constant expressions in
constant declarations:

const
Min = 0;
Max = 100;
Center = (Max - Min) div 2;
Beta = Chr(225);
NumChars = Ord('Z') - Ord('A') + 1;
Message = 'Out of memory' ;
ErrStr = ' Error: ' + Message + '. ';
ErrPos = 80 - Length (ErrStr) div 2;
Ln10 = 2.302585092994045684;
Ln10R = 1 / Ln10;
Numeric = [' 0' .. ' 9' 1 ;
Alpha = [' A' .. ' Z', , a' .. ' z' 1 ;
AlphaNum = Alpha + Numeric;

Language Guide

c H

Simple types

Chapter 4, Types

A p T E R

4

Types

When you declare a variable, you must state its type. A variable's
type circumscribes the set of values it can have and the operations
that can be performed on it. A type declaration specifies the
identifier that denotes a type.

type declaration -I identifier ~~

When an identifier occurs on the left side of a type declaration, it's
declared as a type identifier for the block in which the type
declaration occurs. A type identifier's scope doesn't include itself
except for pointer types.

type

type identifier

There are five major type classes. They are described in the
following sections. .

Simple types define ordered sets of values.

23

24

Chapter 2 explains how to
denote constant integer­

type and real-type values.

Ordinal types

simple type

real type -I real type identifier f-
A real-type identifier is one of the standard identifiers: Real,
Single, Double, Extended, or Compo

Ordinal types are a subset of simple types. All simple types other
than real types are ordinal types, which are set off by six
characteristics:

• All possible values of a given ordinal type are an ordered set,
and each possible value is associated with an ordinality, which is
an integral value. Except for integer-type values, the first value
of every ordinal type has ordinality 0, the next has ordinality I,
and so on for each value in that ordinal type. The ordinality of
an integer-type value is the value itself. In any ordinal type,
each value other than the first has a predecessor, and each value
other than the last has a successor based on the ordering of the
type.

• The standard function Ord can be applied to any ordinal-type
value to return the ordinality of the value.

• The standard function Pred can be applied to any ordinal-type
value to return the predecessor of the value. If applied to the
first value in the ordinal type and if range-checking is enabled
{$R+}, Pred produces a run-time error.

• The standard function Suee can be applied to any ordinal-type
value to return the successor of the value. If applied to the last
value in the ordinal type and if range checking is enabled {$R+},
Suee produces a run-time error.

• The standard function Low can be applied to an ordinal-type
and to a variable reference of an ordinal type. The result is the
lowest value in the range of the given ordinal type.

• The standard function High can be applied to an ordinal-type
and to a variable reference of an ordinal type. The result is the
highest value in the range of the given ordinal type.

The syntax of an ordinal type follows:

Language Guide

ordinal type 1 subrange type

enumerated type

ordinal type identifier

Turbo Pascal has ten predefined ordinal types: Integer, Shortint,
Longint, Byte, Word, Boolean, ByteBool, WordBool, LongBool, and
Char. In addition, there are two other classes of user-defined
ordinal types: enumerated types and subrange types.

Integer types There are five predefined integer types: Shortint, Integer, Longint,
Byte, and Word. Each type denotes a specific subset of the whole
numbers, according to the following table:

Table 4.1
Predefined integer types

Typecasting is described in
Chapters 5 and 6.

Chapter 4, Types

Type

Shortint
Integer
Longint
Byte
Word

Range

-128 .. 127
-32768 .. 32767

-2147483648 .. 2147483647
0 .. 255
0 .. 65535

Format

Signed 8-bit
Signed 16-bit
Signed 32-bit
Unsigned 8-bit
Unsigned 16-bit

Arithmetic operations with integer-type operands use 8-bit, 16-bit,
or 32-bit precision, according to the following rules:

• The type of an integer constant is the predefined integer type
with the smallest range that includes the value of the integer
constant.

• For a binary operator (an operator that takes two operands),
both operands are converted to their common type before the
operation. The common type is the predefined integer type
with the smallest range that includes all possible values of both
types. For example, the common type of Integer and Byte is
Integer, and the common type of Integer and Word is Longint. The
operation is performed using the precision of the common type,
and the result type is the common type.

• The expression on the right of an assignment statement is
evaluated independently from the size or type of the variable
on the left.

• Any byte-sized operand is converted to an intermediate word­
sized operand that is compatible with both Integer and Word
before any arithmetic operation is performed.

An integer-type value can be explicitly converted to another
integer type through typecasting.

25

26

Boolean types There are four predefined Boolean types: Boolean, ByteBool,
WordBool, and LongBool. Boolean values are denoted by the
predefined constant identifiers False and True. Because Booleans
are enumerated types, these relationships hold:

• False < True
• Ord(False) = a
• Ord(True) = 1
.Succ(False) = True
• Pred(True) = False

Boolean and ByteBool variables occupy one byte, a WordBool
variable occupies two bytes (one word), and a LongBool variable
occupies four bytes (two words). Boolean is the preferred type and
uses the least memory; ByteBool, WordBool, and LongBool exist
primarily to provide compatibility with other languages and the
Windows environment.

A Boolean variable can assume the ordinal values a and 1 only, but
variables of type ByteBool, WordBool, and LongBool can assume
other ordinal values. An expression of type ByteBool, WordBool, or
LongBool is considered False when its ordinal value is zero, and
True when its ordinal value is nonzero. Whenever a ByteBool,
WordBool, or LongBool value is used in a context where a Boolean
value is expected, the compiler will automatically generate code
that converts any nonzero value to the value True.

Char type Char's set of values are characters, ordered according to the
extended's ASCII character set. The function call Ord(Ch), where
Ch is a Char value, returns Ch's ordinality.

A string constant of length 1 can denote a constant character
value. Any character value can be generated with the standard
function Chr.

Enumerated types Enumerated types define ordered sets of values by enumerating
the identifiers that denote these values. Their ordering follows the
sequence the identifiers are enumerated in.

enumerated type -CD--I identifier list ~

identifier list ~

Language Guide

When an identifier occurs within the identifier list of an
enumerated type, it's declared as a constant for the block the
enumerated type is declared in. This constant's type is the
enumerated type being declared.

An enumerated constant's ordinality is determined by its position
in the identifier list it's declared in. The enumerated type it's
declared in becomes the constant's type. The first enumerated
constant in a list has an ordinality of zero.

Here's an example of an enumerated type:

type
Suit = (Club, Diamond, Heart, Spade);

Given these declarations, Diamond is a constant of type Suit.

When the Ord function is applied to an enumerated type's value,
Ord returns an integer that shows where the value falls with
respect to the other values of the enumerated type. Given the
preceding declarations, Ord(Club) returns zero, Ord(Diamond)
returns I, and so on.

Subrange types A sub range type is a range of values from an ordinal type called
the host type. The definition of a subrange type specifies the
smallest and the largest value in the subrange; its syntax follows:

Chapter 4, Types

subrange type -I constant ~o-I constant ~

Both constants must be of the same ordinal type. Sub range types
of the form A .. B require that A is less than or equal to B.

These are examples of subrange types:

o .. 99
-128 .. 127
Club .. Heart

A variable of a sub range type has all the properties of variables of
the host type, but its run-time value must be in the specified
interval.

One syntactic ambiguity ar~ses from allowing constant expres­
sions where Standard Pascal only allows simple constants.
Consider the following declarations:

27

Real types

Table 4.2
Real data types

The Comp type holds only
integral values within

_2'3+ 7 to 2'3- 7, which is
approximately-9.2x 7078 to

9.2x 70 78•

28

const
X = 50;
Y = 10;

type
Color = (Red, Green, Blue);
Scale = (X - Y) * 2 .. (X + Y) * 2;

Standard Pascal syntax dictates that, if a type definition starts
with a parenthesis, it's an enumerated type, such as the Color type
in the previous example. The intent of the declaration of scale is to
define a subrange type, however. The solution is to reorganize the
first subrange expression so that it doesn't start with a
parenthesis, or to set another constant equal to the value of the
expression and use that constant in the type definition:

type
Scale = 2 * (X - Y) .. (X + Y) * 2;

A real type has a set of values that is a subset of real numbers,
which can be represented in floating-point notation with a fixed
number of digits. A value's floating-point notation normally
comprises three values-M, B, and E-such that M x BE = N,
where B is always 2, and both M and E are integral values within
the real type's range. These M and E values further prescribe the
real type's range and precision.

There are five kinds of real types: Real, Single, Double, Extended,
and Camp. The real types differ in the range and precision of
values they hold as shown in the following table:

Type

Real
Single
Double
Extended
Camp

Range

2.9 X 10-39 .. 1.7 X 1038
1.5 X 10-45 .. 3.4 X 1038

5.0 X 10-324 .. 1.7 X 10308
3.4 X 10-4932 .. 1.1 X 104932

_263+ 1 .. 263-1

Significant
digits

11-12
7-8

15-16
19-20
19-20

Size in
bytes

6
4
8

10
8

Turbo Pascal supports two models of code generation for
performing real-type operations: software floating point and 80x87
floating point. Use the $N compiler directive to select the
appropriate model. If no 80x87 is present, enable the $E compiler
directive to provide full 80x87 emulation in software.

Language Guide

Software floating point

80x8? floating point

For more details on 80x87
floating-point code

generation and software
emulation, refer to

Chapter 74, "Using the
80x87."

String types

Operators for the string types
are described in the sections

"String operator" and
"Relational operators" in

Chapter 6.

String-type standard
procedures and functions

are described in "String
procedures and functions"

on page 737.

Chapter 4, Types

In the {$N-} state, which is selected by default, the generated code
performs all real-type calculations in software by calling run-time
library routines. For reasons of speed and code size, only opera­
tions on variables of type Real are allowed in this state. Any
attempt to compile statements that operate on the Single, Double,
Extended, and Camp types generates an error.

In the {$N+} state, the generated code performs all real-type
calculations using 80x87 instructions and can use all five real
types.

Turbo Pascal includes a run-time library that will automatically
emulate an 80x87 in software if one isn't present. The $E compiler
directive is used to determine whether or not the 80x87 emulator
should be included in a program.

A string-type value is a sequence of characters with a dynamic
length attribute (depending on the actual character count during
program execution) and a constant size attribute from Ito 255. A
string type declared without a size attribute is given the default
size attribute 255. The length attribute's current value is returned
by the standard function Length.

string type -c3I--T---:::;:::---;::::==========:::;--;::::-r-l-CD--I unsigned integer ~

The ordering between any two string values is set by the ordering
relationship of the character values in corresponding positions. In
two strings of unequal length, each character in the longer string
without a corresponding character in the shorter string takes on a
higher or greater-than value; for example, 'xs' is greater than 'x'.
Null strings can be equal only to other null strings, and they hold
the least string values.

Characters in a string can be accessed as components of an array.
See the section" Arrays, strings, and indexes" on page 55.

The Low and High standard functions can be applied to a string­
type identifier and to a variable reference of a string type. In this
case, Low returns zero, and High returns the size attribute
(maximum length) of the given string.

29

Read about open string
parameters on page 111.

Structured types

The maximum permitted size
of any structured type in

Turbo Pascal is 65,520 bytes.

Array types

30

A variable parameter declared using the OpenString identifier, or
using the string keyword in the {$P+} state, is an open string
parameter. Open string parameters allow string variables of
varying sizes to be passed to the same procedure or function.

A structured type, characterized by its structuring method and by
its component type(s), holds more than one value. If a component
type is struCtured, the resulting structured type has more than
one level of structuring. A structured type can have unlimited
levels of structuring.

structured type -or---=~---'r--or--~
~=======::::.--,

In Standard Pascal, the word packed in a structured type's
declaration tells the compiler to compress data storage, even at
the cost of diminished access to a component of a variable of this
type. In Turbo Pascal, however, packed has no effect; instead
packing occurs automatically whenever possible.

Arrays have a fixed number of components of one type-the
component type. In the following syntax diagram, the component
type follows the word of.

index type -I ordinal type r
The index types, one for each dimension of the array, specify the
number of elements. Valid index types are all ordinal types except
Longint and 5ubranges of Longint. The array can be indexed in
each dimension by all values of the corresponding index type;

Language Guide

See "Arrays, strings, and
indexes" on page 55.

See "Identical and
compatible types" on

page 46.

Chapter 4, Types

therefore, the number of elements is the product of the number of
values in each index type.

The following is an example of an array type:

array[1 .. 100] of Real

If an array type's component type is also an array, you can treat
the result as an array of arrays or as a single multidimensional
array. For example

array [Boolean] of array[l .. 10] of array[Size] of Real

is interpreted the same way by the compiler as

array [Boolean, 1 .. 10,Size] of Real

You can also express

packed array[l .. 10] of packed array[1 .. 8] of Boolean

as

packed array[l .. 10,1 .. 8] of Boolean

You access an array's components by supplying the array's
identifier with one or more indexes in brackets.

When applied to an array-type identifier or a variable reference of
an array type, the Low and High standard functions return the low
and high bounds of the index type of the array.

An array type of the form

packed array[M .. N] of Char

where M is less than N is called a packed string type (the word
packed can be omitted because it has no effect in Turbo Pascal). A
packed string type has certain properties not shared by other
array types, as explained below.

An array type of the form

array[O .. X] of Char

where X is a positive nonzero integer is called a zero-based
character array. Zero-based character arrays are used to store null­
terminated strings, and when the extended syntax is enabled (using
a {$X+} compiler directive), a zero-based character array is
compatible with a PChar value. For a complete discussion of this
topic, read Chapter 16, "Using null~terminated strings,"
beginning on page 167.

31

32

Read about open array
parameters on page 773.

Record types

A parameter declared using the array of T syntax is an open array
parameter. Open array parameters allow arrays of varying sizes to
be passed to the same procedure or function.

A record type comprises a set number of components, or fields,
that can be of different types. The record-type declaration speci­
fies the type of each field and the identifier that names the field.

record type ~-1--;:======:::;1~'~
Lj field list ~

field list L'I -f::-"ix-ed-:--p-art-' L:G)OOT=l variant part po c::o==t I

fixed part ---c identifier list ~

The fixed part of a record type sets out the list of fixed fields,
giving an identifier and a type for each. Each field contains
information that is always retrieved in the same way.

The following is an example of a record type:

type
TDateRec = record

Year: Integer;
Month: 1. .12;
Day: 1..31;

end;

The variant part shown in the syntax diagram of a record-type
declaration distributes memory space for more than one list of
fields, so the information can be accessed in more ways than one.
Each list of fields is a variant. The variants overlay the same space
in memory, and all fields of all variants can be accessed at all
times.

r,---;::======:;-:::::t-J tag field type

tag field type -I ordinal type identifier 1-

Language Guide

Object types

Chapter 4, Types

variant~
",---------," I CD-~Idlist!

You can see from the diagram that each variant is identified by at
least one constant. All constants must be distinct and of an ordinal
type compatible with the tag field type. Variant and fixed fields
are accessed the same way.

An optional identifier, the tag field identifier, can be placed in the
variant part. If a tag field identifier is present, it becomes the iden­
tifier of an additional fixed field-the tag field-of the record. The
program can use the tag field's value to show which variant is
active at a given time. Without a tag field, the program selects a
variant by another criterion.

Some record types with variants follow:

type
TPerson = record

FirstName, LastNarne: string[40];
BirthDate: TDate;
case Citizen: Boolean of

end;

True: (BirthPlace: string[40]);
False: (Country: string[201;

EntryPort: string[20];
EntryDate: TDate;
ExitDate: TDate);

TPolygon = record
X, Y: Real;
case Kind: Figure of

end;

TRectangle: (Height, Width: Real);
TTriangle: (Sidel, Side2, Angle: Real);
TCircle: (Radius: Real);

An object type"is a structure consisting of a fixed number of com­
ponents. Each component is either a field, which contains data of a
particular type, or a method, which performs an operation on the
object. Similar to a variable declaration, the declaration of a field
specifies the field's data type and an identifier that names the
field. Similar to a procedure or function declaration, the decla­
ration of a method specifies a procedure, function, constructor, or
destructor heading.

33

34

These dec/orations are
referred to by other

examples throughout this
chapter.

An object type can inherit components from another object type. If
T2 inherits from Tl, then T2 is a descendant of Tl, and Tl is an
ancestor of T2.

Inheritance is transitive; that is, if T3 inherits from T2, and T2
inherits from Tl, then T3 also inherits from Tl. The domain of an
object type consists of itself and all its descendants.

object type

heritage -cD--! object type identifier ~

component list -r---;==========~~rl-;::::======~""­Lj object field list ~ Lj method list ~

object field list
~'--i-d-en-t-ifi-er-lis-t-~ type t-:O-r
method list

method heading I-y---------------~

integer constant

method heading

component section

procedure heading I---r­

function heading

constructor heading

destructor heading

}--~+I component list

The following code shows examples of object-type declarations:

type
TPoint = object

X, Y: Integer;
end;

TRectangle = object
A, B: TPoint;
procedure Init(XA, YA, XB, YB: Integer);
procedure Copy(var R: TRectangle);
procedure Move(DX, DY: Integer);

Language Guide

procedure Grow(DX, DY: Integer);
procedure Intersect (var R: TRectangle);
procedure Union(var R: TRectangle);
function Contains(D: TPoint): Boolean;

end;

PString = AString;

PField ATField;

TField object
private

x, Y, Len: Integer;
Name: String;

public
constructor Copy(var F: TField);
constructor Init(FX, FY, FLen: Integer; FName: String);
destructor Done; virtual;
procedure Display; virtual;
procedure Edit; virtual;
function GetStr: String; virtual;
function PutStr(S: String): Boolean; virtual;

private
procedure DisplayStr(X, Y: Integer; S: String);

end;

PStrField ATStrField;

TStrField object (TField)
private

Value: PString;
public

constructor Init(FX, FY, FLen: Integer; FName: String);
destructor Done; virtual;
function GetStr: String; virtual;
function PutStr(S: String): Boolean; virtual;
function Get: String;
procedure Put(S: String);

end;

PNumField ATNumField;

TNumField object (TField)
private

Value, Min, Max: Longint;
public

constructor Init(FX, FY, FLen: Integer; FName: String;
FMin, FMax: Longint);

function GetStr: String; virtual;
function PutStr(S: String): Boolean; virtual;
function Get: Longint;

35

36

Components and
scope

procedure Put(N: Longint);
end;

PZipField = ATZipField;

TZipField = object (TNurnField)
public

function GetStr: String; virtual;
function PutStr(S: String): Boolean; virtual;

end;

Contrary to other types, an object type can be declared only in a
type declaration part in the outermost scope of a program or unit.
Therefore, an object type can't be declared in a variable decla­
ration part or within a procedure, function, or method block.

The component type of a file type can't be an object type, or any
structured type with an object-type component.

The scope of a component identifier extends over the domain of
its object type. Also, the scope of a component identifier extends
over procedure, function, constructor, and destructor blocks that
implement methods of the object type and its descendants. For
this reason, the spelling of a component identifier must be unique
within an object type and all its descendants and all its methods.

Component identifiers declared in the component list that
immediately follows the object-type heading and component
identifiers declared in public component sections have no special
restrictions on their scope. In contrast, the scope of component
identifiers declared in private component sections is restricted to
the module (program or unit) that contains the object-type
declaration. In other words, private component identifiers act like
normal public component identifiers within the module that
contains the object-type declaration, but outside the module, any
private component identifiers are unknown and inaccessible. By
placing related object types in the same module, these object types
can gain access to each other's private components without
making the private components known to other modules.

Within an object-type declaration, a method heading can specify
parameters of the object type being declared, even though the
declaration isn't yet complete. In the previous example on page
34, the Copy, Intersect, and Union methods of the TRee tangle type
illustrate this.

Language Guide

Methods

Methods can be called only
through an object instance

variable.

Read more about methods
on page 103.

The declaration of a method within an object type corresponds to
a forward declaration of that method. This means that somewhere
after the object-type declaration, and within the same scope as the
object-type declaration, the method must be implemented by a
defining declaration.

When unique identification of a method is required, a qualified­
method identifier is used. It consists of an object-type identifier,
followed by a period (.), followed by a method identifier. Like any
other identifier, a qualified-method identifier can be prefixed with
a unit identifier and a period, if required.

qualified method identifier

Y object type identifier K)--/ method identifier ~

Virtual methods By default, methods are static. With the exception of constructor
methods, they can be made virtual by including a virtual directive
in the method declaration. The compiler resolves calls to static
methods at compile time. Calls to virtual methods are resolved at
run time; this isknown as late binding.

Chapter 4, Types

If an object type declares or inherits any virtual methods, then
variables of that type must be initialized through a constructor call
before any call to a virtual method. Therefore, any object type that
declares or inherits any virtual methods must also declare or
inherit at least one constructor method.

An object type can override (redefine) any of the methods it
inherits from its ancestors. If a method declaration in a descen­
dant specifies the same method identifier as a method declaration
in an ancestor, then the declaration in the descendant overrides
the declaration in the ancestor. The scope of an override method
extends over the domain of the descendant in which it's intro­
duced, or until the method identifier is again overridden.

An override of a static method is free to change the method
heading any way it pleases. In contrast, an override of a virtual
method must match exactly the order, types, and names of the
parameters, and the type of the function result, if any. The
override must again include a virtual directive.

37

38

Dynamic methods Turbo Pascal supports an additional class of late-bound methods
called dynamic methods. Dynamic methods differ from virtual
methods only in the way dynamic method calls are d!spatched at
run time. For all other purposes, a dynamic method can be
considered equivalent to a virtual method.

The declaration of a dynamic method is like that of a virtual
method except that a dynamic method declaration must include a
dynamic method index right after the virtual keyword. The dynamic
method index must be an integer constant in the range 1..65535
and it must be unique among the dynamic method indexes of any
other dynamic methods contained in the object type or its
ancestors. For example,

procedure FileOpen(var Msg: TMessage); virtual 100;

An override of a dynamic method must match the order, types,
and names of the parameters and the type of the function result of
the ancestral method exactly. The override must also include a
virtual directive followed by the same dynamic method index as
was specified in the ancestor object type.

Instantiating objects An object is instantiated, or created, through the declaration of a
variable or typed constant of an object type, or by applying the
New procedure to a pointer variable of an object type. The
resulting object is called an instance of the object type. For
example, given these variable declarations,

var
F: TField;
Z: TZipField;
FP: PField;
ZP: PZipField;

F is an instance of TFieId and Z is an instance of TZipFieId.
Likewise, after applying New to FP and ZP, FP points to an
instance of TField and ZP points to an instance of TZipFieId.

If an object type contains virtual methods, then instances of that
object type must be initialized through a constructor call before
any call to a virtual method. Here's an example:

var
s: TStrField;

begin
S.Init(l, 1,25, 'Firstname');

Language Guide

Chapter 4, Types

S. Put ('Frank') ;
S.Display;

S.Done;
end;

If S.Init had not been called, then the call to S.Display causes this
example to fail.

Assignment to an instance of an object type doesn't initialize the
instance.

An object is initialized by compiler-generated code that executes
between the time that the constructor call takes place and when
execution actually reaches the first statement of the constructor's
code block.

If an object instance isn't initialized and range checking is 'on
{$R+}, the first call to a virtual method of the object instance
results in a run-time error. If range checking is off {$R-}, calling a
virtual method of an uninitialized object instance results in
undefined behavior.

The rule of required initialization also applies to instances that are
components of structured types. For example,

var
Comment: array[l .. 5] of TStrField;
I: Integer;

begin
for I := 1 to 5 do Comment [I] .Init(l, I + 10, 40, 'Comment');

for I := 1 to 5 do Comment [I] .Done;
end;

For dynamic instances, initialization is typically coupled with
allocation, and cleanup is typically coupled with deallocation,
using the extended syntax of the New and Dispose procedures.
Here's an example:

var
SP: PStrField;

begin
New(SP, Init(l, 1, 25, 'Firstnarne'));
SPA.Put('Frank') ;
SpA.Display;

Dispose(SP, Done);
end;

39

A pointer to an object type is assignment-compatible with a
pointer to any ancestor object type. Therefore, during execution of
a program, a pointer to an object type might point to an instance
of that type or to an instance of any descendant type.

For example, a pointer of type PZipField can be assigned to
pointers of type PZipField, PNumField, and PField, and during
execution of a program, a pointer of type PField might be either nil
or point to an instance of TField, TStrField, TNumField, or
TZipField, or any other instance of a descendant of TField.

Pointer assignment-compatibility rules also apply to object-type
variable parameters. For example, the TField.Copy method might
be passed an instance of TField, TStrField, TNumField, TZipField, or
any other instance of a descendant of TField.

Method activations A method is activated through a function call or procedure
statement consisting of a method designator followed by an actual
parameter list. This type of call is known as a method activation.

See "Function calls" on page
76 and "Procedure method designator

statements" on page 82. I.....-r;============:;--:::~n method identifier

See "With statements" on
page 90 and "Method

declarations" on page 703.

40

variable reference

The variable reference specified in a method designator must
denote an instance of an object type, and the method identifier
must denote a method of that object type.

The instance denoted by a method designator becomes an implicit
actual parameter of the method; it corresponds to a formal
variable parameter named Self that possesses the object type
corresponding to the activated method.

For static methods, the declared (compile-time) type of the instance
determines which method to activate. For example, the
designators F.lnit and FpA.Init will always activate TField.lnit

. because the declared type of F and FPA is TField.

For virtual methods, the actual (run-time) type of the instance
governs the selection. For example, the designator FPA . Display
might activate TField.Display, TStrField.Display, TNumField.Display,
or TZipField.Display, depending on the actual type of the instance
pointed to by FP.

Within a with statement that references an instance of an object
type, the variable-reference part of a method designator can be
omitted. In that case, the implicit Self parameter of the method

Language Guide

activation becomes the instance referenced by the with statement.
Likewise, within a method, the variable-reference part of a
method designator can be omitted. In that case, the implicit Self
parameter of the method activation becomes the Self of the
method containing the call.

Qualified-method Within a method, a function call or procedure statement allows a
activations qualified-method designator to denote activation of a specific

method. This type of call is known as a qualified-method activation.
See "Function calls" on page

76 and "Procedure
statements" on page 82.

Chapter 4, Types

qualified method designator

object type identifier

inherited

method identifier

The object type specified in a qualified-method designator must
be the same as the enclosing method's object type or an ancestor
of it.

The reserved word inherited can be used to denote the ancestor of
the enclosing method's object type; inherited can't be used within
methods of an object type that has no ancestor.

The implicit Self parameter of a qualified-method activation
becomes the Self of the method containing the call. A qualified­
method activation never employs the virtual method dispatch
mechanism-the call is always static and always invokes the
specified method.

A qualified-method activation is generally used within an
override method to activate the overridden method. Referring to
the types declared earlier on page 34, here are some examples of
qualified-method activations:

constructor TNumField.Init(FX, FY, FLen: Integer;
FName: String; FMin, FMax: Longint);

begin
inherited Init(FX, FY, FLen, FName);
Value := 0;
Min := FMin;
Max := FMax;

end;

function TZipField.PutStr(S: String): Boolean;
begin

PutStr .- (Length(S) = 5) and TNumField.PutStr(S);
end;

41

Set types

Set-type operators are
described in the section "Set
operators" in Chapter 6. "Set

constructors" in the same
chapter shows how to

construct set values.

File types

42

As these examples demonstrate, a qualified-method activation
allows an override method to "reuse" the code of the method it
overrides.

A set type's range of values is the power set of a particular ordinal
type (the base type). The power set is the set of all possible subsets
of values of the base type including the empty set. Therefore, each
possible value of a set type is a subset of the possible values of the
base type.

A variable of a set type can hold from none to all the values of the
set.

set type -@--@--l ordinal type ~

The base type must not have more than 256 possible values, and
the ordinal values of the upper and lower bounds of the base type
must be within the range 0 to 255.

Every set type can hold the value [], which is called the empty set.

A file type consists of a linear sequence of components of the
component type, which can be of any type except a file type, any
structured type with a file-type component, or an object type. The
number of components isn't set by the file-type declaration.

file type

If the word of and the component type are omitted, the type
denotes an untyped file. Untyped files are low-level I/O
(input/output) channels primarily used for direct access to any
disk file regardless of its internal format.

The standard file type Text signifies a file containing characters
organized into lines. Text files use special I/O procedures, which
are discussed in Chapter 13, "Input and output."

Language Guide

Pointer types

Type Pointer

See Chapter 5$ section
entitled "Pointers and

dynamic variables" on page
56 for the syntax of

referencing the dynamic
variable pointed to by a

pointer variable.

Type PChar

Chapter 4, Types

A pointer type defines a set of values that point to dynamic
variables of a specified type called the base type. A pointer-type
variable contains the memory address of a dynamic variable.

pointer type -0--l base type ~

base type -I type identifier ~

If the base type is an undeclared identifier, it must be declared in
the same type declaration part as the pointer type.

You can assign a value to a pointer variable with the New proce­
dure, the @ operator, or the Ptr function. New allocates a new
memory area in the application heap for a dynamic variable and
stores the address of that area in the pointer variable. The @
operator directs the pointer variable to the memory area
containing any existing variable or procedure or function entry
point, including variables that already have identifiers. Ptr points
the pointer variable to a specific memory address.

The reserved word denotes a pointer-valued constant that doesn't
point to anything.

The predefined type Pointer denotes an untyped pointer; that is, a
pointer that doesn't point to any specific type. Variables of type
Pointer can't be dereferenced; writing the pointer symbol" after
such a variable is an error. Generic pointers, however, can be
typecast to allow dereferencing. Like the value denoted by the
word nil, values of type Pointer are compatible with all other
pointer types.

Turbo Pascal has a predefined type, Pehar, to represent a pointer
to a null-terminated string. The System unit declares pehar as

type PChar = AChar;

Turbo Pascal supports a set of extended syntax rules to facilitate
handling of null-terminated strings using the pehar type. For a
complete discussion of this topic, see Chapter 16, "Using null­
terminated strings."

43

Procedural types

Procedural values

44

Standard Pascal regards procedures and functions as program
parts that can be executed through procedure or function calls.
Turbo Pascal has a much broader view of procedures and
functions: It allows procedures and functions to be treated as
entities that can be assigned to variables and passed as parame­
ters. Such actions are made possible through procedural types.

A procedural-type declaration specifies the parameters and, for a
function, the result type.

procedural type

formal parameter list

In essence, the syntax for writing a procedural-type declaration is
exactly the same as for writing a procedure or function header,
except that the identifier after the procedure or function keyword
is omitted. Some examples of procedural-type declarations follow:

type
Proc = procedure;
SwapProc = procedure(var X, Y: Integer);
StrProc = procedure(S: string);
MathFunc = function(X: Real): Real;
DeviceFunc = function(var F: Text): Integer;
MaxFunc = function (A, B: Real; F: MathFunc): Real;

The parameter names in a procedural-type declaration are purely
- decorative-they have no effect on the declaration's meaning.

Turbo Pascal doesn't let you declare functions that return proce­
dural-type values; a function result must be a string, real, integer,
char, boolean, pointer, or user-defined enumeration-type value.
But you can return the address of a procedure or function using a
function result of type Pointer and then typecast it to the
procedural type you desire.

A variable of a procedural type can be assigned a procedural value.
Procedural values can be one of these:

Language Guide

See "Procedural types in
expressions" on page 44.

Chapter 4, Types

• The value nil
• A variable reference of a procedural type
• A procedure or function identifier

In the context of procedural values, a procedure or function
declaration can be viewed as a special kind of constant
declaration, the value of the constant being the procedure or
function. For example, given the following declarations:

var
P: SwapProc;
F: MathFunc;

procedure Swap(var A, B: Integer); far;
var

Temp: Integer;
begin

Temp := A;
A := B;
B := Temp;

end;

function Tan (Angle: Real); far;
begin

Tan := Sin(Angle) / Cos (Angle) ;
end;

the variables P and F can be assigned values as follows:

P := Swap;
F := Tan;

and calls can be made using P and F as follows:

P (I, J);

X := F(X);
{ Equivalent to Swap(I, J) }
{ Equivalent to X := Tan(X) }

Using a procedural variable that has been assigned the value nil in
a procedure statement or a function call results in an error. nil is
intended to indicate that a procedural variable is unassigned, and
whenever there is a possibility that a procedural variable is nil,
procedure statements or function calls involving that procedural
variable should be guarded by a test:

if @P <> nil then P(I, J);

Notice the use of the @ operator to indicate that P is being ex­
amined rather than being called.

45

Type
compatibility To be considered compatible, procedural types must have the

same number of parameters, and parameters in corresponding
positions must be of identical types. Finally, the result types of
functions must be identical. Parameter names have no
significance when determining procedural-type compatibility.

The value nil is compatible with any procedural type.

To be used as procedural values, procedures and functions must
be declared with a far directive or compiled in the {$F+} state.
Also, standard procedures and functions, nested procedures and
functions, methods, inline procedures and functions, and interrupt
procedures can't be used as procedural values.

Standard procedures and functions are the ones declared by the
System unit, such as WriteLn, ReadLn, Chr, and Ord. To use a
standard procedure or function as a procedural value, write a
"shell" around it. For example, the following function FSin is
assignment-compatible with the MathFunc type declared above.

function FSin(X: Real): Real; far;
begin

FSin : = Sin (X) ;
end;

A procedure or function is nested when it's declared within
another procedure or function. Such nested procedures and
functions can't be used as procedural values.

Identical and compatible types

Type identity

46

Two types can be the same, and this sameness (identity) is
mandatory in some contexts. At other times, the two types need
only be compatible or merely assignment-compatible. They are
identical when they are declared with, or their definitions stem
from, the same type identifier.

Type identity is required only between actual and formal variable
parameters in procedure and function calls.

Language Guide

Type
compatibility

Chapter 4, Types

Two types-say, Tl and T2-are identical if one of the following
is true: Tl and T2 are the same type identifier; Tl is declared to be
equivalent to a type identical to T2.

The second condition connotes that Tl doesn't have to be de­
clared directly to be equivalent to T2. The type declarations

Tl = Integer;
T2 = Tl;
T3 = Integer;
T4 = T2;

result in Tl, T2, T3, T4, and Integer as identical types. The type
declarations

T5 = set of Integer;
T6 = set of Integer;

don't make T5 and T6 identical because set of Integer isn't a type
identifier. Two variables declared in the same declaration, for
example,

Vl, V2: set of Integer;

are of identical types-unless the declarations are separate. The
declarations

Vl: set of Integer;
V2: set of Integer;
V3: Integer;
V4: Integer;

mean V3 and V 4 are of identical type, but not Vl and V2.

Compatibility between two types is sometimes required, such as
in expressions or in relational operations. Type compatibility is
important, however, as a precondition of assignment
compatibility.

Type compatibility exists when at least one of the following
conditions is true:

• Both types are the same.

• Both types are real types.

• Both types are integer types.

• One type is a subrange of the other.

• Both types are subranges of the same host type.

47

48

Assignment
compatibility

• Both. types are set types with compatible base types.

• Both types are packed string types with an identical number of
components.

• One type is a string type and the other is either a string type,
packed string type, or Char type.

• One type is Pointer and the other is any pointer type.

• One type is PChar and the other is a zero-based character array
of the form array[O .. X] of Char. (This applies only when
extended syntax is enabled with the {$X+} directive.)

• Both types are pointers to identical types. (This applies only
when type-checked pointers are enabled with the {$T +}
directive.)

• Both types are procedural types with identical result types, an
identical number of parameters, and a one-to-one identity
between parameter types.

Assignment compatibility is necessary when a value is assigned to
something, such as in an assignment statement or in passing
value parameters.

A value of type T2 is assignment-compatible with a type T1 (that
is, T1 := T2 is allowed) if any of the following are True:

• T1 and T2 are identical types and neither is a file type or a
structured type that contains a file-type component at any level
of structuring.

• T1 and T2 are compatible ordinal types, and the values of type
T2 falls within the range of possible values of T1.

• T1 and T2 are real types, and the value of type T2 falls within the
range of possible values of T l'

• T1 is a real type, and T2 is an integer type.

• T 1 and T 2 are string types.

• T1 is a string type, and T2 is a Char type.

• T1 is a string type, and T2 is a packed string type.

• T1 and T2 are compatible, packed string types.

• T1 and T2 are compatible set types, and all the members of the
value of type T 2 fall within the range of possible values of T l'

• T1 and T2 are compatible pointer types.

Language Guide

• T1 is a PChar and T2 is a string constant. (This applies only
when extended syntax is enabled {$X+}.)

• T1 is a PChar and T2 is a zero-based character array of the form
array[O .. X] of Char. (This applies only when extended syntax is
enabled {$X+}.)

• T1 and T2 are compatible procedural types.

• T1 is a procedural type, and T2 is a procedure or function with
an identical result type, an identical number of parameters, and
a one-to-one identity between parameter types.

• T2 is assignment-compatible with an object type T1 if T2 is an
object type in the domain of T l'

• A pointer type P2, pointing to an object type T2, is assignment­
compatible with a pointer type P 1, pointing to an object type T 11

if T 2 is' in the domain of T l'

A compile-time error occurs when assignment compatibility is
necessary and none of the items in the preceding list are true.

The type declaration part

Chapter 4, Types

Programs, procedures, functions, and methods that declare types
have a type declaration part. This is an example of a type declara­
tion part:

type
TRange = Integer;
TNumber = Integer;
TColor = (Red, Green, Blue);
TCharVal = Ord('A') .. Ord('Z');
TTestIndex = 1 .. 100;
TTestValue = -99 .. 99;
TTestList = array [TTestIndexj of TTestValue;
PTestList = ~TTestList;
TDate = object

Year: Integer;
Month: 1. .12 ;
Day: 1..31;
procedure SetDate(D, M, Y: Integer);
function ShowDate: String;

end;

49

50

TMeasureData = record
When: TDatei
Count: TTestIndexi
Data: PTestListi

endi
TMeasureList = array[1 .. 50] of TMeasureDatai
TName = string[80]i
TSex = (Male, Female)i
PPersonData = ATPersonDatai
TPersonData = record

Name, FirstName: TNamei
Age: Integeri
Married: Booleani
TFather, TChild, TSibling: PPersonDatai
case S: TSex of

endi

Male: (Bearded: Boolean);
Female: (Pregnant: Boolean)i

TPersonBuf = array[O . . SizeOf(TPersonData)-l] of Byte;
TPeople = file of TPersonDatai

In the example, Range, Number, and Integer are identical types.
TTestIndex is compatible and assignment-compatible with, but not
identical to, the types Number, Range, and Integer. Notice the use
of constant expressions in the declarations of TCharVal and
TPersonBuf

Language Guide

c H A p T E R

5

Variables and typed constants

Variable declarations

A variable is an identifier that marks a value that can change. A
variable declaration is a list of identifiers that designate new
variables and their types.

variable declaration

absolute clause

The type given for the variable(s) can be a type identifier
previously declared in a type declaration part in the same block,
in an enclosing block, or in a unit; it can also be a new type
definition.

When an identifier is specified within the identifier list of a
variable declaration, that identifier is a variable identifier for the
block in which the declaration occurs. The variable can then be
referred to throughout the block, unless the identifier is rede­
clared in an enclosed block. Redeclaration creates a new variable
using the same identifier, without affecting the value of the
original variable.

An example of a variable declaration part follows:

var
X, Y, Z: Real;
I, J, K: Integer;
Digit: 0 .. 9;

Chapter 5, Variables and typed constants 51

The data
segment

For information on dynamic
variables, see "Pointers and

dynamic variables" on
page 56.

The stack

C: Color;
Done, Error: Boolean;
Operator: (Plus, Minus, Times);
Hue1, Hue2: set of Color;
Today: Date;
Results: MeasureList;
P1, P2: Person;
Matrix: array[1 .. 10, 1 .. 10] of Real;

Variables declared outside procedures and functions are called
global variables, and they reside in the data segment. Variables
declared within procedures and functions are called local variables,
and they reside in the stack segment.

The maximum size of the data segment is 65,520 bytes. When a
program is linked (this happens automatically at the end of the
compilation of a program), the global variables of all units used
by the program, as well as the program's own global variables, are
placed in the data segment.

If you need more than 65,520 bytes of global data, you should
allocate the larger structures as dynamic variables.

segment The size of the stack segment is set through a $M compiler
directive-it can be anywhere from 1,024 to 65,520 bytes. The
default stack-segment size is 16,384 bytes.

52

Each time a procedure or function is activated (called), it allocates
a set of local variables on the stack. On exit, the local variables are
. disposed of. At any time during the execution of a program, the
total size of the local variables allocated by the active procedures
and functions can't exceed the size of the stack segment.

The $S compiler directive is used to include stack-overflow
checks in the code. In the default {$S+} state, code is generated to
check for stack overflow at the beginning of each procedure and
function. In the {$S-} state, no such checks are performed.

A stack overflow can cause a system crash, so don't turn off stack
checks unless you're absolutely sure that an overflow will never
occur.

Language Guide

Absolute
variables

Variable

Variables can be declared to reside at specific memory addresses,
and are then called absolute variables. The declaration of such
variables must include an absolute clause following the type:

The variable declaration's identifier list can only specify one
identifier when an absolute clause is present.

The first form of the absolute clause specifies the segment and
offset at which the variable is to reside:

CrtMode : Byte absblute $0040:$0049;

The first constant specifies the segment base, and the second
specifies the offset within that segment. Both constants must be
within the range $0000 to $FFFF (0 to 65,535).

The second form of the absolute clause is used to declare a
variable "on top" of another variable, meaning it declares a
variable that resides at the same memory address as another
variable:

var
Str: string[32];
StrLen: Byte absolute Str;

This declaration specifies that the variable StrLen should start at
the same address as the variable Str, and because the first byte of
a string variable contains the dynamic length of the string, StrLen
will contain the length of Str.

references A variable reference signifies one of the following:

ill A variable
• A component of a structured- or string-type variable
• A dynamic variable pointed to by a pointer-type variable

Chapter 5, Variables and typed constants 53

Qualifiers

54

This is the syntax of a variable reference:

variable reference

The syntax for a variable reference allows an expression that
computes a pointer-type value. The expression must be followed
by a qualifier that dereferences the pointer value (or indexes the
pointer value if the extended syntax is enabled with the {$X+}
directive) to produce an actual variable reference.

A variable reference can contain zero or more qualifiers that
modify the meaning of the variable reference.

qualifier

An array identifier with no qualifier, for example, references the
entire array:

Results

An array identifier followed by an index denotes a specific
component of the array-in this case, a structured variable:

Results[Current + 1]

With a component that is a record or object, the index can be
followed by a field designator. Here the variable access signifies a
specific field within a specific array component:

Results[Current + 1] .Data

The field designator in a pointer field can be followed by the
pointer symbol (/\) to differentiate between the pointer field and
the dynamic variable it points to:

Results[Current + 1] .DataA

If the variable being pointed to is an array, indexes can be added
to denote components of this array:

Results[Current + 1] .DataA[J]

Language Guide

Arrays, strings, and
indexes

A specific component of an array variable is denoted by a variable
reference that refers to the array variable, followed by an index
that specifies the component.

A specific character within a string variable is denoted by a
variable reference that refers to the string variable, followed by an
index that specifies the character position.

index ~ expression f--r-CD--
.... ------t01+1 ------I

The index expressions select components in each corresponding
dimension of the array. The number of expressions can't exceed
the number of index types in the array declaration. Also, each
expression's type must be assignment-compatible with the
corresponding index type.

When indexing a multidimensional array, multiple indexes or
multiple expressions within an index can be used interchange­
ably. For example,

Matrix [I] [J]

is the same as

Matrix[I, J]

You can index a string variable with a single index expression,
whose value must be in the range O .. N, where N is the declared
size of the string. This accesses one character of the string value,
with the type Char given to that character value.

The first character of a string variable (at index 0) contains the
dynamic length of the string; that is, Length(S) is the same as
Ord(S[oJ). If a value is assigned to the length attribute, the
compiler doesn't check whether this value is less than the
declared size of the string. It's possible to index a string beyond its
current dynamic length. The characters read are random and
assignments beyond the current length don't affect the actual
value of the string variable.

When the extended syntax is enabled (using the {$X+} compiler
directive), a value of type PChar can be indexed with a single
index expression of type Word. The index expression specifies an
offset to add to the character pointer before it's dereferenced to
produce a Char type variable reference.

Chapter 5, Variables and typed constants 55

· Records and field
designators

Object component
designators

Pointers and dynamic
variables

56

A specific field of a record variable is denoted by a variable
reference that refers to the record variable, followed by a field
designator specifying the field.

field designator -()-l field identifier f--
These are examples of a field designator:

Today.Year
Results[l] .Count
Results [1] . When.Month

In a statement within a with statement, a field designator doesn't
have to be preceded by a variable reference to its containing
record.

The format of an object component designator is the same as that
of a record field designator; that is, it consists of an instance (a
variable reference), followed by a period and a component identi­
fier. A component designator that designates a method is called a
method designator. A with statement can be applied to an instance
of an object type. In that case, the instance and the period can be
omitted in referencing components of the object type.

The instance and the period can also be omitted within any
method block, and when they are, the effect is the same as if Self
and a period were written before the component reference.

The value of a pointer variable is either nil or the address of a
dynamic variable.

The dynamic variable pointed to by a pointer variable is refer­
enced by writing the pointer symbol (/\) after the pointer variable.

You create dynamic variables and their pointer values with the
procedures New and GetMem. You can use the @ (address-of)
operator and the function Ptr to create pointer values that are
treated as pointers to dynamic variables.

nil doesn't point to any variable. The results are undefined if you
access a dynamic variable when the pointer's value is nil or
undefined. These are examples of references to dynamic variables:

Pi"
Pl".Sibling"
Results[l] .Data"

Language Guide

Variable
typecasts

The programmer is
responsible for determining

the validity of a typecast.

A variable reference of one type can be changed into a variable
reference of another type through a variable typecast.

variable typecast

type identifier variable reference

When a variable typecast is applied to a variable reference, the
variable reference is treated as an instance of the type specified by
the type identifier. The size of the variable (the number of bytes
occupied by the variable) must be the same as the size of the type
denoted by the type identifier. A variable typecast can be followed
by one or more qualifiers, as allowed by the specified type.

These are examples of variable typecasts:

type
TByteRec = record

La, Hi: Byte;
end;
TWordRec = record

Low, High: Word;
end;
TPtrRec = record

Ofs, Seg: Word;
end;
PByte = "Byte;

var
B: Byte;
W: Word;
L: Longint;
P: Pointer;

begin
W := $1234;
B := TByteRec(W) .Lo;
TByteRec(W) .Hi := 0;
L := $01234567;
W := TWordRec(L) .Low;
B := TByteRec (TWordRec (L) .Low) .Hi;
B := PByte(L)";
P := Ptr($40,$49);
W := TPtrRec(P) .Seg;
Inc (TPtrRec (P) .Ofs, 4);

end.

Chapter 5, Variables and typed constants 57

Notice the use of the TByteRec type to access the low- and high­
order bytes of a word. This corresponds to the built-in functions
Lo and Hi, except that a variable typecast can also be used on the
left side of an assignment. Also, observe the use of the TWordRec
and TPtrRec types to access the low- and high-order words of a
long integer and the offset and segment parts of a pointer.

Turbo Pascal fully supports variable typecasts involving
procedural types. For example, given the declarations

type
Func = function {X: Integer): Integer;

var
F: TFunc;
P: Pointer;
N: Integer;

you can construct the following assignments:

F : = Func (P) ;
Func{P) := F;
@F := P;

P := @F;

N := F(N);

N : = Func (P) (N) ;

{ Assign procedural value in P to F }
{ Assign procedural value in F to P }

{ Assign pointer value in P to F }
{ Assign pointer value in F to P }

{ Call function via F }
{ Call function via P }

In particular, notice that the address operator (@), when applied
to a procedural variable, can be used on the left side of an
assignment. Also, notice the typecast on the last line to call a
function via a pointer variable.

Typed constants

58

Typed constants can be compared to initialized variables­
variables whose values are defined on entry to their block. Unlike
an untyped constant, the declaration of a typed constant specifies
both the type and the value of the constant.

typed constant declaration

L-I identifier ~ typed constant ~

Language Guide

Simple-type
constants

typed constant -~-+I
::======---------.

procedural constant

Typed constants can be used exactly like variables of the same
type, and can appear on the left-hand side in an assignment state­
ment. Note that typed constants are initialized only once-at the
beginning of a program. Therefore, for each entry to a procedure
or function, the locally-declared typed constants aren't
reinitialized.

In addition to a normal constant expression, the value of a typed
constant can be specified using a constant-address expression. A
constant-address expression is an expression that involves taking
the address, offset, or segment of a global variable, a typed con­
stant, a procedure, or a function. Constant-address expressions
can't reference local variables (stack based) or dynamic (heap­
based) variables, because their addresses can't be computed at
compile time.

Declaring a typed constant as a simple type specifies the value of
the constant:

const
Maximum: Integer = 9999;
Factor: Real = -0.1;
Breakchar: Char = #3;

As mentioned earlier, the value of a typed constant can be
specified using a constant-address expression, that is, an
expression that takes the address, offset, or segment of a global
variable, a typed constant, a procedure, or a function. For
example,

var
Buffer: array[O .. 1023] of Byte;

const
BufferOfs: Word = Ofs(Buffer);
BufferSeg: Word = Seg(Buffer);

Chapter 5, Variables and typed constants 59

60

String-type
constants

Structured-type
constants

Array-type constants

Because a typed constant is actually a variable with a constant
value, it can't be interchanged with ordinary constants. For
example, it can't be used in the declaration of other constants or
types:

const
Min: Integer = 0;
Max: Integer = 99;

type
TVector = array [Min .. Max] of Integer;

The TVector declaration is invalid, because Min and Max are typed
constants.

The declaration of a typed constant of a string type specifies the
maximum length of the string and its initial value:

const
Heading: string[7] = 'Section';
NewLine: string[2] = #13#10;
TrueStr: string[5] = 'Yes';
FalseStr: string[5] = 'No';

The declaration of a structured-type constant specifies the value
of each of the structure's components. Turbo Pascal supports the
declaration of array, record, object, and set-type constants. File­
type constants and constants of array, record, and object types
that contain file-type components aren't allowed.

The declaration of an array-type constant specifies the values of
the components. The values are enclosed in parentheses and
separated by commas.

array constant -cD-r' typed constant ~
...... --~O)+o----.I

This is an example of an array-type constant:

type
TStatus = (Active, Passive, Waiting);
TStatusMap = array[Status] of string[7];

const
StatStr: TStatusMap = ('Active', 'Passive', 'Waiting');

Language Guide

For more about nul/­
terminated strings, see

Chapter 76.

This example defines the array constant StatStr, which can be
used to convert values of type TStatus into their corresponding
string representations. These are the components of StatStr:

StatStr[Active] = 'Active'
StatStr[Passive] = 'Passive'
StatStr[Waiting] = 'Waiting'

The component type of an array constant can be any type except a
file type. Packed string-type constants (character arrays) can be
specified both as single characters and as strings. The definition

const
Digits: array[0 .. 9] of Char = ('0', '1', '2', '3', '4', '5',

'6', '7', , 8', '9');

can be expressed more conveniently as

const
Digits: array[0 .. 9] of Char = '0123456789';

When the extended syntax is enabled (using a {$X+} compiler
directive), a zero-based character array can be initialized with a
string that is shorter than the declared length of the array. For
example,

const
FileName = array[O .. 79] of Char = 'TEST.PAS';

In such cases, the remaining characters are set to NULL (#0) and
the array effectively contains a null-terminated string.

Multidimensional-array constants are defined by enclosing the
constants of each dimension in separate sets of parentheses,
separated by commas. The innermost constants correspond to the
rightmost dimensions. The declaration

type
Cube = array[O .. l, 0 .. 1, 0 .. 1] of Integer;

const
Maze: Cube = (((0, 1), (2, 3)), ((4, 5), (6, 7)));

provides an initialized array Maze with the following values:

Maze[O, 0, 0] = 0
Maze[O, 0, 1] = 1
Maze[O, 1, 0] = 2
Maze[O, 1, 1] = 3
Maze[l, 0, 0] = 4
Maze[l, 0, 1] = 5

Chapter 5, Variables and typed constants 61

Maze[l, 1, 0] = 6
Maze[l, 1, 1] = 7

Record-type constants The declaration of a record-type constant specifies the identifier
and value of each field, enclosed in parentheses and separated by
semicolons.

record constant
L.cD-C-f-ie-ld-id-e-nt-ifi-er---'~ typed constant TeD--
These are examples of record constants:

type
TPoint = record

~, Y: Real;
end;
TVector = array[O . . 1] of Point;
TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct,

Nov, Dec);
TDate = record

D: 1. .31;
M: Month;
Y: 1900 .. 1999;

end;
const

Origin: TPoint = (X: 0.0; Y: 0.0);
Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0));
SomeDay: TDate = (D: 2; M: Dec; Y: 1960);

The fields must be specified in the same order as they appear in
the definition of the record type. If a record contains fields of file
types, the constants of that record type can't be declared. If a
record contains a variant, only fields of the selected variant can be
specified. If the variant contains a tag field, then its value must be
specified.

Object-type constants The declaration of an object-type constant uses the same syntax as
the declaration of a record-type constant. No value is, or can be,
specified for method components. Referring to the earlier object­
type declarations starting on page 34, these are examples of
object-type constants:

62 Language Guide

const
ZeroPoint: TPoint = (X: Oi Y: O)i
ScreenRect: TRect = (A: (X: Oi Y: 0) i B: (X: 80i Y: 25));
CountField: TNumField = (X: 5; Y: 20i Len: 4; Name: nili

Value: 0; Min: -999; Max: 999)i

Constants of an object type that contains virtual methods need not
be initialized through a constructor call-this initialization is
handled automatically by the compiler.

Set-type constants Just like a simple-type constant, the declaration of a set-type
constant specifies the value of the set using a constant expression.
Here are some examples:

Pointer-type
constants

type
Digits = set of O •• 9;
Letters = set of 'A' .. 'Z';

const
EvenDigits: Digits = [0, 2, 4, 6, 8];
Vowels: Letters = ['A', 'E', 'I', '0', lUI, 'Y']i

HexDigits: set of 'O' .. 'z' = ['0' .. '9', 'A' .. 'F', 'a' ... f']i

The declaration of a pointer-type constant uses a constant-address
expression to specify the pointer value. Some examples follow:

type
TDirection = (Left, Right, Up, Down);
TStringptr = AString;
PNode = ATNode;
TNode = record

Next: PNode;
Symbol: TStringPtr;
Value: TDirection;

end;

const
Sl: string[4] , DOWW i
S2: string[2] 'UP'i
S3: string [5] 'RIGHT'i
S4: string [4] 'LEFT'i
N1: TNode = (Next: nili
N2: TNode = (Next: @Nl;
N3: TNode = (Next: @N2i
N4: TNode = (Next: @N3;

Symbol:
Symbol:
Symbol:
Symbol:

DirectionTable: PNode = @N4;

@Sli
@S2;
@S3i
@S4;

Value: Down) i
Value: Up) ;
Value: Right) ;
Value: Left) ;

Chapter 5, Variables and typed constants 63

64

Procedural-type
constants

When the extended syntax is enabled (using a {$X+} compiler
directive), a typed constant of type PChar can be initialized with a
string constant. For example,

const
Message: PChar = 'Program terminated';
Prompt: PChar = 'Enter values: ';
Digits: array[O .. 9) of PChar = (

'Zero', 'One', 'Two', 'Three', 'Four',
'Five', 'Six', 'Seven', 'Eight', 'Nine');

The result is that the pointer now points to an area of memory
that contains a zero-terminated copy of the string literal. See
Chapter 16, "Using null-terminated strings," for more
information.

A procedural-type constant must specify the identifier of a proce­
dure or function that is assignment-compatible with the type of
the constant, or it must specify the value nil.

procedural constant

Here's an example:

type
TErrorProc = procedure (ErrorCode: Integer);

procedure DefaultError(ErrorCode: Integer); far;
begin

WriteLn('Error " ErrorCode, , .');
end;

const
ErrorHandler: TErrorProc = DefaultError;

Language Guide

c H

Table 6.1
Precedence of operators

Chapter 6, Expressions

A p T E R

6

Expressions
Expressions are made up of operators and operands. Most Pascal
operators are binary; they take two operands. The rest are unary
and take only one operand. Binary operators use the usual
algebraic form (for example, A + B). -A unary operator always
precedes its operand (for example, -B).

In more complex expressions, rules of precedence clarify the order
in which operations are performed.

Operators Precedence Categories

@,not first (high) unary operators

*, /, diY, mod, and, second multiplying operators
shl, shr

+,., or, xor third adding operators

=, <>, <, >, <=, >=, in fourth (low) relational operators

There are three basic rules of precedence:

• An operand between two operators of different precedence is
bound to the operator with higher precedence.

• An operand between two equal operators is bound to the one
on its left.

• Expressions within parentheses are evaluated prior to being
treated as a single operand.

65

Operations with equal precedence are normally performed from
left to right, although the compiler may rearrange the operands to
generate optimum code.

Expression syntax

66

The precedence rules follow from the syntax of expressions,
which are built from factors, terms, and simple expressions.

A factor's syntax follows:

factor variable reference

unsigned constant f-----------t

value typecast f-------------t
address factor f---------------'

A function call activates a function and denotes the value
returned by the function. See "Function calls" on page 76.

A set constructor denotes a value of a set type. See "Set
constructors" on page 76.

A value typecast changes the type of a value. See "Value
typecasts" on page 77.

An address factor computes the address of a variable, procedure,
function, or method. See "The @ operator" on page 75.

An unsigned constant has the following syntax:

unsigned constant unsigned number

character string

Language Guide

Chapter 6, Expressions

These are some examples of factors:

x
@X
15
(X + Y + Z)
Sin(X / 2)
exi t [I 0 I •• I 9 I I I A I •• I Z I 1
not Done
Char(Digit + 48)

{ Variable reference
Pointer to a variable

Unsigned constant
{ SUbexpression
{ Function call
Set constructor

Negation of a Boolean
{ Value typecast

Terms apply the multiplying operators to factors:

term

Here are some examples of terms:

x * Y
Z / (1 - Z)

Y shl 2
(X <= Y) and (Y < Z)

Simple expressions apply adding operators and signs to terms:

simple expression

Here are some examples of simple expressions:

X + Y
-x
Hue1 + Hue2
I * J + 1

An expression applies the relational operators to simple
expressions:

67

Operators

Arithmetic

expression

simple expression Jr--:::::::::-----;:::======:;-r-
~---,.~-.j simple expression

Here are some examples of expressions:

x = 1.5
Done <> Error
(I < J) = (J < K)
C in Huel

Operators are classified as arithmetic operators, logical operators,
string operators, character-pointer operators, set operators,
relational operators, and the @ operator.

operators The following tables show the types of operands and results for
binary and unary arithmetic operations.

Table 6.2
Binary arithmetic operations

The + operator is a/so used as
a string or set operator, and

the +, -, and * operators are
a/so used as set operators.

68

Operator Operation

+ addition

subtraction

* multiplication

div

mod

division

integer division

remainder

Operand types Result type

integer type integer type
real type real type

integer type integer type
real type real type

integer type integer type
real type real type

integer type real type
real type real type

integer type integer type

integer type integer type

Language Guide

Table 6.1
Unary arithmetic operations

For a definition of common
types, see page 25.

Logical operators

Chapter 6, Expressions

Operator Operation

+ sign identity

sign negation

Operand types

integer type
real type

integer type
real type

Result type

integer type
real type

integer type
real type

Any operand whose type is a subrange of an ordinal type is
treated as if it were of the ordinal type.

If both operands of a +, -, *, div, or mod operator are of an integer
type, the result type is of the common type of the two operands.

If one or both operands of a +, -, or * operator are of a real type,
the type of the result is Real in the {$N-} state or Extended in the
{$N+} state.

If the operand of the sign identity or sign negation operator is of
an integer type, the result is of the same integer type. If the
operator is of a real type, the type of the result is Real or Extended.

The value of X / Y is always of type Real or Extended regardless of
the operand types. A run-time error occurs if Y is zero.

The value of I div J is the mathematical quotient of I / J, rounded
in the direction of zero to an integer-type value. A run-time error
occurs if J is zero.

The mod operator returns the remainder obtained by dividing its
two operands; that is,

I mod J = I - (I div J) * J

The sign of the result of mod is the same as the sign of I. A run­
time error occurs if J is zero.

The types of operands and results for logical operations are
shown in Table 6.4.

69

70

Table 6.4
Logical operations

The not operator is a unary
operator.

Boolean

Operator Operation Operand types Result type

not bitwise negation integer type Boolean
and bitwise and integer type Boolean
or bitwise or integer type Boolean
xor bitwise xor integer type Boolean
shl shift left integer type Boolean
shr shift right integer type Boolean

If the operand of the not operator is of an integer type, the result
is of the same integer type.

If both operands of an and, or, or xor operator are of an integer
type, the result type is the common type of the two operands.

The operations I shl J and I shr J shift the value of I to the left right
by J bits. The result type is the same as the type of I.

operators The types of operands and results for Boolean operations are
shown in Table 6.5.

Table 6.5
Boolean operations

The not operator is a unary
operator.

Operator Operation Operand types Result type

not negation Boolean type Boolean
and logical and Boolean type Boolean
or logical or Boolean type Boolean
xor logical xor Boolean type Boolean

Normal Boolean logic governs the results of these operations. For
instance, A and B is True only if both A and B are True.

Turbo Pascal supports two different models of code generation
for the and and or operators: complete evaluation and short­
circuit (partial) evaluation.

Complete evaluation means that every operand of a Boolean
expression built from the and and or operators is guaranteed to be
evaluated, even when the result of the entire expression is already
known. This model is convenient when one or more operands of
an expression are functions with side effects that alter the
meaning of the program.

Short-circuit evaluation guarantees strict left-to-right evaluation
and that evaluation stops as soon as the result of the entire
expression becomes evident. This model is convenient in most
cases because it guarantees minimum execution time, and usually

Language Guide

String operator

Table 6.6
String operation

Character-

minimum code size. Short-circuit evaluation also makes possible
the evaluation of constructs that would not otherwise be legal. For
example,

while (I <= Length(S)) and (S[I] <> ' ') do
Inc (I);

while (P <> nil) and (pA.Value <> 5) do
p := PA.Next;

In both cases, the second test is not evaluated if the first test is
False.

The evaluation model is controlled through the $B compiler
directive. The default state is {$B-}, and in this state, the compiler
generates short-circuit evaluation code. In the {$B+} state, the
compiler generates complete evaluation.

Because Standard Pascal doesn't specify which model should be
used for Boolean expression evaluation, programs dependent on
either model are not truly portable. You may decide, however,
that sacrificing portability is worth the gain in execution speed
and simplicity provided by the short-circuit model.

The types of operands and results for string operation are shown
in Table 6.6.

Operator Operation Operand types Result type

+ concatenation string type, string type
Char type, or
packed string type

Turbo Pascal allows the + operator to be used to concatenate two
string operands. The result of the operation 5 + T, where Sand T
are of a string type, a Char type, or a packed string type, is the
concatenation of 5 and T. The result is compatible with any string
type (but not with Char types and packed string types). If the
resulting string is longer than 255 characters, it's truncated after
character 255.

pointer operators The extended syntax (enabled using a {$X+} compiler directive)
supports a number of character-pointer operations. The plus (+)
and minus (-) operators can be used to increment and decrement

Chapter 6, Expressions 71

Table 6.7
Permitted PChar constructs

72

Set operators

Table 6.8
Set operations

the offset part of a pointer value, and the minus operator can be
used to calculate the distance (difference) between the offset parts
of two character pointers. Assuming that P and Q are values of
type PChar and I is a value of type Word, these constructs are
allowed:

Operation Result

P + I Add I to the offset part of P
I + P Add I to the offset part of P
P - I Subtract I from the offset part of P
P - Q Subtract offset part of Q from offset part of P

The operations P + I and I + P adds I to the address given by P,
producing a pointer that points I characters after P. The operation
P - I subtracts I from the address given by P, producing a pointer
that points I characters before P.

The operation P - Q computes the distance between Q (the lower
address) and P (the higher address), resulting in a value of type
Word that gives the number of characters between Q and P. This
operation assumes that P and Q point within the same character
array. If the two character pointers point into different character
arrays, the result is undefined.

The types of operands for set operations are shown in Table 6.8.

Operator

+

*

Operation

union
difference
intersection

Operand types

compatible set types
compatible set types
compatible set types

The results of set operations conform to the rules of set logic:

• An ordinal value C is in A + B only if C is in A or B.

• An ordinal value C is in A - B only if C is in A and not in B.

• An ordinal value C is in A * B only if C is in both A and B.

If the smallest ordinal value that is a member of the result of a set
operation is A and the largest is B, then the type of the result is
set of A .. B.

Language Guide

Relational
operators

Table 6.9
Relational operations

Comparing simple
types

Chapter 6, Expressions

The types of operands and results for relational operations are
shown in Table 6.9.

Operator type Operation Operand types Result type

= equal compatible simple, Boolean
pointer, set, string,
or packed string types

<> not equal compatible simple, Boolean
pointer, set, string,
or packed string types

< less than compatible simple, Boolean
string, packed
string types, or
PChar

> greater than compatible simple, Boolean
string, packed
string types, or
PChar

<= less than compatible simple, Boolean
or equal to string, packed

string types, or
PChar

>= greater than compatible simple, Boolean
or equal to string, or packed

string types, or
PChar

<= subset of compatible set types Boolean

>= superset of compatible set types Boolean

in member of left operand, any Boolean
ordinal type T;
right operand, set
whose base is
compatible with T

When the operands =, <>, <, >, >=, or <= are of simple types, they
must be compatible types; however, if one operand is of a real
type, the other can be of an integer type.

73

Comparing strings

Comparing packed
strings

Comparing pointers

Comparing character
pointers

Comparing sets

74

The relational operators =, <>, <, >, >=, and <= compare strings
according to the ordering of the extended ASCII character set.
Any two string values can be compared because all string values
are compatible.

A character-type value is compatible with a string-type value.
When the two are compared, the character-type value is treated as
a string-type value with length 1. When a packed string-type
value with N components is compared with a string-type value,
it's treated as a string-type value with length N.

The relational operators =, <>, <, >, >=, and <= can also be used to
compare two packed string-type values if both have the same
number of components. If the number of components is N, then
the operation corresponds to comparing two strings, each of
lengthN.

The operators = and <> can be used on compatible pointer-type
operands. Two pointers are equal only if they point to the same
object.

The extended syntax (enabled using a {$X+} compiler directive)
allows the >, <, >=, and <= operators to be applied to PChar
values. Note, however, that these relational tests assume that the
two pointers being compared point within the same character array,
and for that reason, the operators only compare the offset parts of
the two pointer values. If the two character pointers point into
different character arrays, the result is undefined.

If A and B are set operands, their comparisons produce these
results:

• A = B is True only if A and B contain exactly the same members;
otherwise, A <> B.

• A <= B is True only if every member of A is also a member of B.

• A >= B is True only if every member of B is also a member of A.

Language Guide

Testing set membership The in operator returns True when the value of the ordinal-type
operand is a member of the set-type operand; otherwise, it returns
False.

The @ operator

@ with a variable

Special rules apply to use of
the @ operator with a

procedural variable. For
more details, see

"Procedural types in
expressions" on page 78.

@ with a procedure,
function, or method

Chapter 6, Expressions

The @ operator is used in an address factor to compute the
address of a variable, procedure, function, or method.

address factor :--r----+I variable reference

procedure identifier

function identifier

The @ operator returns the address of its operand, that is, it
constructs a pointer value that points to the operand.

When applied to a variable reference, @ returns a pointer to the
variable. The type of the resulting pointer value is controlled
through the $T compiler directive: in the {$T-} state (the default),
the result type is Pointer. In other words, the result is an untyped
pointer, which is compatible with all other pointer types. In the
{$T +} state, the type of the result is AT, where Tis the type of the
variable reference. In other words, the result is of a type that is
compatible only with other pointers to the type of the variable.

You can apply @ to a procedure, function, or method to produce a
pointer to the routine's entry point. The type of the resulting
pointer is always Pointer, regardless of the state of the $T compiler
directive. In other words, the result is always an untyped pointer,
which is compatible with all other pointer types.

When @ is applied to a method, the method must be specified
through a qualified-method identifier (an object-type identifier,
followed by a period, followed by a method identifier).

75

Function calls

See "Method activations" on
page 40, "Qualified-method

activations" on page 41, and·
"Procedural types" on

page 44.

Set constructors

76

A function call activates a function specified by a function
identifier, a method designator, a qualified-method designator, or
a procedural-type variable reference. The function call must have
a list of actual parameters if the corresponding function
declaration contains a list of formal parameters. Each parameter
takes the place of the corresponding formal parameter according
to parameter rules explained in Chapter 9, "Procedures and
functions," on page 107.

function call

function identifier

method designator
actual parameter list

variable reference

actual parameter list -CD---r:1 actual parameter TeD--
~---------~()~I-----~

actual parameter expression i-------r-­

variable reference

Some examples of function calls follow:

Sum(A, 63)
Maximum {147 , J)

Sin(X + Y)
Eof (F)

Volume (Radius, Height)

In the extended syntax {$X+} mode, function calls can be used as
statements; that is, the result of a function call can be discarded.

A set constructor denotes a set-type value, and is formed by
writing expressions within brackets ([D. Each expression denotes
a value of the set.

Language Guide

Value typecasts

See "Variable typecasts" on
page 57.

Chapter 6, Expressions

set constructor -(Df--"lr---;:==========::;---,---' CD-­T! member group ~
L..----<Ol+I---.....

member group -l expression I-r---:::::::::----;:======::::;-,-+ Lo-l expression f---1
The notation [] denotes the empty set, which is assignment­
compatible with every set type. Any member group X .. Y denotes
as set members all values in the range X .. Y. If X is greater than Y,
then X .. Y doesn't denote any members and [X .. Y] denotes the
empty set.

All expression values in member groups in a particular set
constructor must be of the same ordinal type.

These are some examples of set constructors:

[red, C, green)

[1, 5, 10 .. K mod 12, 23)
['A' .. 'Z', 'a' .. 'z', Chr(Digit + 48))

The type of an expression can be changed to another type through
a value typecast.

value typecast -I type identifier r--cIH expression KD-
The expression type and the specified type must both be either
ordinal types or pointer types. For ordinal types, the resulting
value is obtained by converting the expression. The conversion
may involve truncation or extension of the original value if the
size of the specified type is different from that of the expression.
In cases where the value is extended, the sign of the value is
always preserved; that is, the value is sign-extended.

The syntax of a value typecast is almost identical to that of a
variable typecast. Value typecasts operate on values, however, not
on variables, and therefore they can't particIpate in variable
references; that is, a value typecast can't be followed by qualifiers.
In particular, value typecasts can't appear on the left side of an
assignment statement.

77

These are some examples of value typecasts:

Integer (' A')
Char (48)
Boolean(O)
Color(2)
Longint(@Buffer)
BytePtr(Ptr($40 , $49))

Procedural types in expressions

78

Usually, using a procedural variable in a statement or an
expression calls the procedure or function stored in the variable.
There is one exception: When the compiler sees a procedural
variable on the left side of an assignment statement, it knows that
the right side has to represent a procedural value. For example,
consider the following program:

type
IntFunc = function: Integer;

var
F: IntFunc;
N: Integer;

function ReadInt: Integer; far;
var

I: Integer;
begin

Read(I) ;
ReadInt : = I;

end;

begin
F := ReadInt;
N := ReadInt;

end.

{ Assign procedural value }
{ Assign function result }

The first statement in the main program assigns the procedural
value (address of) Readlnt to the procedural variable F, where the
second statement calls Readlnt and assigns the returned value to
N. The distinction between getting the procedural value or calling
the function is made by the type of the variable being assigned (F
or N).

Unfortunately, there are situations where the compiler can't
determine the desired action from the context. For example, in the
following statement there is no obvious way the compiler can

Language Guide

Chapter 6, Expressions

know if it should compare the procedural value in F to the
procedural value of Readlnt to determine if F currently points to
Readlnt, or if it should call F and Readlnt and then compare the
returned values.

if F = ReadInt then
WriteLn('Equal') ;

Standard Pascal syntax, however, specifies that the occurrence of
a function identifier in an expression denotes a call to that
function, so the effect of the preceding statement is to call F and
Readlnt, and then compare the returned values. To compare the
procedural value in F to the procedural value of Readlnt, the
following construct must be used:

if @F = @ReadInt then
Writeln('Equal');

When applied to a procedural variable or a procedure or function
identifier, the address (@) operator prevents the compiler from
calling the procedure, and at the same time converts the argument
into a pointer. @F converts F into an untyped pointer variable that
contains an address, and @Readlnt returns the address of Readlnt;
the two pointer values can then be compared to determine if F
currently refers to Readlnt.

The @ operator is often used when assigning an untyped pointer
value to a procedural variable. Here is an example:

procedure SorneProc;
begin

end;

var
SornePtr: Pointer;

begin

SornePtr := @SorneProc;

end.

To get the memory address of a procedural variable rather than
the address stored in it, use a double address (@@) operator. For
example, where @P means convert P into an untyped pointer
variable, @@P means return the physical address of the variable P.

79

80 Language Guide

c H A p T E R

7

Statements

Statements describe algorithmic actions that can be executed.
Labels can prefix statements, and these labels can be referenced
by goto statements.

statement Ir-;:::::==::;--::::~TT---;:============:;--r-­
simple statement

A label is either a digit sequence in the range 0 to 9999 or an
identifier.

There are two main types of statements: simple statements and
structured statements.

Simple statements

Chapter 7, Statements

A simple statement is a statement that doesn't contain any other
statements.

simple statement assignment statement

81

Assignment
statements

See the section "Type
compatibility" on page 47.

Object-type
assignments

Procedure
statements

See Chapter 9, "Procedures
and functions. "

82

Assignment statements replace the current value of a variable
with a new value specified by an expression. They can be used to
set the return value of the function also.

assignment statement

variable reference

function identifier

The expression must be assignment-compatible with the type of
the variable or the type of the function result.

These are examples of assignment statements:

X := Y + Zi
Done := (I >= 1) and (I < 100)i
Hue1 := [Blue, SuCC(C)li
I := Sqr(J) - I * Ki

The rules of object-type assignment compatibility allow an
instance of an object type to be assigned an instance of any of its
descendant types. Such an assignment constitutes a projection of
the descendant onto the space spanned by its ancestor. In the
example code starting on page 34, given an instance F of type
TField and an instance Z of type TZipField, the assignment F := Z
copies only the fields X, Y, Len, and Name.

Assigning as instance of an object doesn't initialize the instance.
Referring to the preceding example, the assignment F := Z doesn't
mean that a constructor call for F can be omitted.

A procedure statement activates a procedure specified by a
procedure identifier, a method designator, a qualified method
designator, or a procedural-type variable reference. If the
corresponding procedure declaration contains a list of formal
parameters, then the procedure statement must have a matching
list of actual parameters (parameters listed in definitions are
formal parameters; in the calling statement, they are actual

Language Guide

Goto statements

Good programming
practices recommend that
you use goto statements as

little as possible.

parameters). The actual parameters are passed to the formal
parameters as part of the call.

procedure statement

procedure identifier r------:nr-;:::============::::;-f­
method designator

actual parameter list

variable reference

Some examples of procedure statements follow:

PrintHeadingi
Transpose (A, N, M)i

Find (Name, Address)i

A goto statement transfers program execution to the statement
marked by the specified label. The syntax diagram of a goto
statement follows:

goto statement ~

When using goto statements, observe the following rules:

• The label referenced by a goto statement must be in the same
block as the goto statement. In other words, it's not possible to
jump into or out of a procedure or function.

• Jumping into a structured statement from outside that
structured statement (that is, jumping to a deeper level of
nesting) can have undefined effects, although the compiler
doesn't indicate an error. For example, you shouldn't jump into
the middle of a for loop.

Structured statements

Chapter 7, Statements

Structured statements are constructs composed of other
statements that are to be executed in sequentially (compound and
with statements), conditionally (conditional statements), or
repeatedly (repetitive statements).

83

84

Compound
statements

Conditional

structured statement -~-+l compound statement

The compound statement specifies that its component statements
are to be executed in the same sequence as they are written. The
component statements are treated as one statement, crucial in
contexts where the Pascal syntax only allows one statement. begin
and end bracket the statements, which are separated by
semicolons.

compound statement

Here's an example of a compound statement:

begin
Z := Xi

X := Yi
Y := Zi

endi

statements A conditional statement selects for execution a single one (or
none) of its component statements.

conditional statement

If statements The syntax for an if statement reads like this:

The expression must yield a result of the standard type Boolean. If
the expression produces the value True, then the statement
following then is executed.

Language Guide

Note: No semicolon is
allowed preceding an else

clause.

If the expression produces False and the else part is present, the
statement following else is executed; if the else part isn't present,
execution continues at the next statement following the if
statement.

The syntactic ambiguity arising from the construct

if e1 then if e2 then 81 else 82;

is resolved by interpreting the construct as follows:

if e1 then
begin

if e2 then
81

else
82

end;

Usually, an else is associated with the closest if not already
associated with an else.

Two examples of if statements follow:

if x < 1. 5 then
Z := X + Y

else
Z := 1.5;

if P1 <> nil then
P1 := P1 A .Father;

Case statements The case statement consists of an expression (the selector) and a
list of statements, each prefixed with one or more constants
(called case constants) or with the word else. The selector must be
of a byte-sized or word-sized ordinal type, so string types and the
integer type Longint are invalid selector types. All case constants
must be unique and of an ordinal type compatible with the
selector type.

case statement

case --r' constant I '~ constant ~ statement f--

Chapter 7, Statements 85

86

Repetitive
statements

else part -®--I statement ~

The case statement executes the statement prefixed by a case
constant equal to the value of the selector or a case range contain­
ing the value of the selector. If no such case constant of the case
range exists and an else part is present, the statement following
else is executed. If there is no else part, execution continues with
the next statement following the if statement.

These are examples of case statements:

case Operator of
Plus: X := X + Y;
Minus: X := X - Y;
Times: X := X * Y;

end;

case I of
0, 2, 4, 6, 8: Writeln('Even digit');
1, 3, 5, 7, 9: Writeln('Odd digit');
10 .. 100: Writeln('Between 10 and 100');

else
Writeln('Negative or greater than 100');

end;

Repetitive statements specify certain statements to be executed
repeatedly.

repetitive statement

for statement

If the number of repetitions is known beforehand, the for
statement is the appropriate construct. Otherwise, the while or
repeat statement should be used.

The Break and Continue standard procedures can be used to
control the flow of repetitive statements: Break terminates a
repetitive statement, and Continue continues with the next
iteration of a repetitive statement. For more details on these
standard procedures, see Chapter I, "Library reference," in the
Programmer's Reference.

Language Guide

Repeat statements A repeat statement contains an expression that controls the
repeated execution of astatement sequence within that repeat
statement.

repeat statement

~expressionf---

The expression must produce a result of type Boolean. The
statements between the symbols repeat and until are executed in
sequence until, at the end of a sequence, the expression yields
True. The sequence is executed at least once because the expres­
sion is evaluated after the execution of each sequence.

These are examples of repeat statements:

repeat
K := I mod J;
I := J;
J := K;

until J = 0;

repeat
Write(/Enter value (0 .. 9): ');
Readln(1) ;

until (I >= 0) and (I <= 9);

While statements A while statement contains an expression that controls the
repeated execution of a statement (which can be a compound
statement).

Chapter 7, statements

while statement ~ expression f---®--l statement f--.
The expression controlling the repetition must be of type Boolean.
It is evaluated before the contained statement is executed. The
contained statement is executed repeatedly as long as the expres­
sion is True. If the expression is False at the beginning, the state­
ment isn't executed at all.

These are examples of while statements:

while Data[1] <> X do I := I + 1;

87

88

while I > 0 do
begin

if Odd (I) then Z := Z * X;
I := I div 2;
X := Sqr(X);

end;

while not 'Eof(1nFile) do
begin

Readln(1nFile, Line);
Process (Line) ;

end;

For statements The for statement causes a statement to be repeatedly executed
while a progression of values is assigned to a control variable.
Such a statement can be a compound statement.

See Chapter 8 for a
discussion of locality and

scope.

for statement

control variable -I variable identifier ~

initial value -I expression ~

final value -I expression ~

The control variable must be a variable identifier (without any
qualifier) that is local in scope to the block containing the for
statement. The control variable must be of an ordinal type. The
initial and final values must be of a type assignment-compatible
with the ordinal type.

When a for statement is entered, the initial and final values are
determined once for the remainder of the execution of the for
statement.

The statement contained by the for statement is executed once for
every value in the range initial value to final value. The control vari­
able always starts off at initial value. When a for statement uses to,
the value of the control variable is incremented by one for each
repetition. If initial value is greater than final value, the contained
statement isn't executed. When a for statement uses downto, the
value of the control variable is decremented by one for each
repetition. If initial value value is less than final value, the contained
statement isn't executed.

Language Guide

Chapter 7, Statements

If the contained statement alters the value of the control variable,
your results will probably not be what you expect. After a for
statement is executed, the value of the control variable value is
undefined, unless execution of the for statement was interrupted
by a goto from the for statement.

With these restrictions in mind, the for statement

for V := ExprI to Expr2 do Body;

is equivalent to

begin
TempI := ExprI;
Temp2 := Expr2;
if TempI <= Temp2 then
begin

V := TempI;
Body;
while V <> Temp2 do
begin

V : = Succ (V) ;

Body;
end;

end;
end;

and the for statement

for V := ExprI downto Expr2 do Body;

is equivalent to

begin
TempI := ExprI;
Temp2 := Expr2;
if TempI >= Temp2 then
begin

V := TempI;
Body;
while V <> Temp2 do
begin

V := Pred(V);

Body;
end;

end;
end;

89

With statements

90

where Templ and Temp2 are auxiliary variables of the host type of
the variable V and don't occur elsewhere in the program.

These are examples of for statements:

for I := 2 to 63 do
if Data[I] > Max then

Max := Data[I]

for I := 1 to 10 do
for J := 1 to 10 do
begin

X := 0;
for K := 1 to 10 do

X := X + Mat1[I, K] * Mat2[K, J];
Ma t [I, J] : = X;

end;

for C := Red to Blue do Check(C);

The with statement is shorthand for referencing the fields of a
record, and the fields and methods of an object. Within a with
statement, the fields of one or more specific record variables can
be referenced using their field identifiers only. The syntax of a
with statement follows:

record or object ~I L-------..
variable reference ~ variable reference_ ~

Given this type declaration,

type
TDate = record

Day : Integer;
Month: Integer;
Year : Integer;

end;

var OrderDate: TDate;

Language Guide

Chapter 7, Statements

here is an example of a with statement:

with OrderDate do
if Month = 12 then
begin

Month := 1;
Year := Year + 1

end
else

Month := Month + 1;

This is equivalent to

if OrderDate.Month = 12 then
begin

OrderDate.Month := 1;
OrderDate.Year := TDate.Year + 1

end
else

OrderDate.Month := TDate.Month + 1;

Within a with statement, each variable reference is first checked to
see if it can be interpreted as a field of the record. If so, it's always
interpreted as such, even if a variable with the same name is also
accessible. Suppose the following declarations have been made:

type
TPoint = record
X, Y: Integer;
end;

var
X: TPoint;
Y: Integer;

In this case, both X and Y can refer to a variable or to a field of the
record. In the statement

with X do
begin

X := 10;
Y := 25;

end;

the X between with and do refers to the variable of type TPoint,
but in the compound statement, X and Y refer to X.X and X. Y.

91

92

The statement

with Vl, V2, ... Vn do S;

is equivalent to

with Vl do
with V2 do

with Vn do
S;

In both case?, if Vn is a field of both Vl and V2, it's interpreted as
V2.Vn, not Vl.Vn.

If the selection of a record variable involves indexing an array or
dereferencing a pointer, these actions are executed once before the
component statement is executed.

Language Guide

c H

Blocks

A p T E R

8

Blocks, locality, and scope

A block is made up of declarations, which are written and
combined in any order, and statements. Each block is part of a
procedure declaration, a function declaration, a method
declaration, or a program or unit. All identifiers and labels
declared in the declaration part are local to the block.

The overall syntax of any block follows this format:

block -l declaration part ~I statement part ~

declaration part
H label declaration part I

H constant declaration part

r-- type declaration part

r-- variable declaration part I

~ procedure/function declaration part I--

Labels that mark statements in the corresponding statement part
are declared in the label declaration part. Each label must mark only
one statement.

Chapter 8, Blocks, locality, and scope 93

label declaration part

A label must be an identifier or a digit sequence in the range a to
9999.

The constant declaration part consists of constant declarations local
to the block.

constant declaration part
.-----------,

>--:t---,r--+! constant declaration i----r--"T"'"+

typed constant declaration

The type declaration part includes all type declarations local to the
block.

type declaration part -~ type declaration I--r
The variable declaration part is composed of variable declarations
local to the block.

variable declaration part -@>-rl variable declaration l-r
The procedure and function declaration part is made up of procedure
and function declarations local to the block.

procedure/function declaration part

L...-r---r--+I procedure declaration

function declaration

constructor declaration

destructor declaration

The statement part defines the statements or algorithmic actions to
be executed by the block.

statement part -l compound statement r

94 Language Guide

Rules of scope

Block scope

Record scope

See "Record types" on
page 32.

The presence of an identifier or label in a declaration defines the
identifier or label. Each time the identifier or label occurs again, it
must be within the scope of this declaration.

The scope of an identifier or label declared in a label, constant,
type, variable, procedure, or function declaration stretches from
the point of declaration to the end of the current block, and
includes all blocks enclosed by the current block.

An identifier or label declared in an outer block can be redeclared
in an inner block enclosed by the outer block. Before the point of
declaration in the inner block, and after the end of the inner block,
the identifier or label represents the entity declared in the outer
block.

program Outer;
type

I = Integer;
var

T: I;

procedure Inner;
type

T = I;

var
I: T;

begin
I : = 1;

end;

begin
T : = 1;

end.

{ Start of outer scope }

{ define I as type Integer }

{ define T as an Integer variable }

Start of inner scope }

redefine T as type Integer

{ redefine I as an Integer variable

{ End of inner scope }

{ End of outer scope }

The scope of a field identifier declared in a record-type definition
extends from the point of declaration to the end of the record-type
definition. Also, the scope of field identifiers includes field desig­
nators and with statements that operate on variable references of
the given record type.

Chapter 8, Blocks, locality, and scope 95

96

Object scope

See "Object types" on
page 33.

Unit scope

The scope of a component identifier declared in an object-type
definition extends from the point of declaration to the end of the
object-type definition, and extends over all descendants of the
object type and the blocks of all method declarations of the object
type. The scope of component identifiers includes field
designators and with statements that operate on variable
references of the given object type.

The scope of identifiers declared in the interface section of a unit
follow the rules of block scope, and extends over all clients of the
unit. In other words, programs or units containing uses clauses
have access to the identifiers belonging to the interface parts of
the units in those uses clauses.

Each unit in a uses clause imposes a new scope that encloses the
remaining units used and the program or unit containing the
uses clause. The first unit in a uses clause represents the
outermost scope, and the last unit represents the innermost scope.
This implies that if two or more units declare the same identifier,
an unqualified reference to the identifier selects the instance
declared by the last unit in the uses clause. But by writing a
qualified identifier (a unit identifier, followed by a period,
followed by the identifier), every instance of the identifier can be
selected.

The identifiers of Turbo Pascal's predefined constants, types,
variables, procedures, and functions act as if they were declared
in a block enclosing all used units and the entire program. In fact,
these standard objects are defined in a unit called System, which is
used by any program or unit before the units named in the uses
clause. This means that any unit or program can redeclare the
standard identifiers, but a specific reference can still be made
through a qualified identifier, for example, System.Integer or
System. Writeln.

Language Guide

c H

See Chapter 8, "Blocks,
locality, and scope, II for a

definition of a block.

Standard procedures and
functions are those that are

defined in Turbo Pascal's
System unit.

A p T E R

9

Procedures and functions

Procedures and functions let you nest additional blocks in the
main program block. Each procedure or function declaration has a
heading followed by a block. A procedure is activated by a
procedure statement; a function is activated by the evaluation of
an expression that contains its call and returns a value to that
expression.

This chapter discusses the different types of procedure and
function declarations and their parameters.

Procedure declarations

A procedure declaration associates an identifier with a block as a
procedure; that procedure can then be activated by a procedure
statement.

procedure declaration

Y procedure heading f--O-l subroutine block ~

procedure heading

formal parameter list

Chapter 9, Procedures and functions 97

The syntax for a formal
parameter list is shown in the

section "Parameters" on
page 107.

98

Near and far
declarations

Near and far calls are
described in Chapter 20,

"Control issues. "

procedure body

The procedure heading names the procedure's identifier and
specifies the formal parameters (if any).

A procedure is activated by a procedure statement, which states
the procedure's identifier and actual parameters, if any. The
statements to be executed on activation are noted in the statement
part of the procedure's block. If the procedure's identifier is used
in a procedure statement within the procedure's block, the
procedure is executed recursively (it calls itself while executing).

Here's an example of a procedure declaration:

procedure NumString(N: Integer; var S: string);
var

V: Integer;
begin

V := Abs (N);

S .- " . . - ,
repeat

S := Chr(N mod 10 + Ord('O')) + S;
N := N div 10;

until N = 0;

if N < 0 then
S .- '-' + S;

end;

Turbo Pascal supports two procedure and function call models:
near and far. In terms of code size and execution speed, the near
call model is the more efficient, but near procedures and functions
can only be called from within the module they are declared in.
On the other hand, far procedures and functions can be called
from any module, but the code for a far call is slightly less
efficient.

The compiler automatically selects the correct call model based on
a procedure's or function's declaration: Procedures and functions
declared in the interface part of a unit use the far call model-

Language Guide

Interrupt
declarations

See "Writing interrupt
procedures" on page 243.

Forward

they can be called from other modules. Procedures and functions
declared in a program or in the implementation part of a unit use
the near call model-they can only be called from within that
program or unit.

For some purposes, a procedure or function may be required to
use the far call model. For example, if a procedure or function is
to be assigned to a procedural variable, it has to use the far call
model. The $F compiler directive can be used to override the
compiler's automatic call model selection. Procedures and
functions compiled in the {$F+} state always use the far call
model; in the {$F-} state, the compiler automatically selects the
correct model. The default state is {$F-}.

To force a specific call model, a procedure or function declaration
can optionally specify a near or far directive before the block-if
such a directive is present, it overrides the setting of the $F
compiler directive as well as the compiler's automatic call model
selection.

Optionally, a procedure declaration can specify an interrupt
directive before the block; the procedure is then considered an
interrupt procedure. For now, note that interrupt procedures can't
be called from procedure statements, and that every interrupt
procedure must specify a parameter list like the following:

procedure MyInt(Flags, es, IP, AX, BX, ex, DX, SI, DI, DS, ES,
BP: Word);

interrupt;

The parameter list doesn't have to match this syntax perfectly; it
can be shorter and use different names, but the register contents
are passed in the order listed .above.

declarations A procedure or function declaration that specifies the directive
forward instead of a block is a forward declaration. Somewhere
after this declaration, the procedure must be defined by a defining
declaration. The defining declaration can omit the formal
parameter list and the function result, or it can optionally repeat
it. In the latter case, the defining declaration's heading must match
exactly the order, types, and names of parameters, and the type of
the function result, if any.

Chapter 9, Procedures and functions 99

No forward dec/arations are
allowed in the interface part

ofa unit.

External
declarations

For further details on linking
with assembly language, see

Chapter 23.

100

The forward declaration and the defining declaration must appear
in the same procedure and function declaration part. Other
procedures and functions can be declared between them, and they
can call the forward-declared procedure. Therefore, mutual
recursion is possible.

The forward declaration and the defining declaration constitute a
complete procedure or function declaration. The procedure or
function is considered declared at the forward declaration.

This is an example of a forward declaration:

procedure Walter(M, N: Integer); forward;

procedure Clara(X, Y: Real);
begin

Walter(4, 5);

end;

procedure Walter;
begin

Clara (8.3, 2.4);

end;

A procedure's or function's defining declaration can be an external
or assembler declaration; however, it can't be a near, far,
interrupt, or inline declaration or another forward declaration.

External declarations let you interface with separately compiled
procedures and functions written in assembly language. The
external code must be linked with the Pascal program or unit
through {$L filename} directives.

Examples of external procedure declarations follow:

procedure MoveWord(var Source, Dest; Count: Word); external;
procedure MoveLong(var Source, Dest; Count: Word); external;

procedure FillWord(var Dest; Data: Integer; Count: Word); external;
procedure FillLong(var Dest; Data: Longint; Count: Word); external;

{$L BLOCK.OBJ}

Language Guide

Assembler
declarations

For more details on
assembler procedures and
functions, see Chapter 22.

Inline

With assembler declarations, you can write entire procedures and
functions in inline assembly language.

asm block

declaration part asm statement

declarations The inline directive enables you to write machine code instruc­
tions in place of a block of Pascal code.

See the syntax of an inline
statement on page 284.

inline directive -l inline statement ~

When a normal procedure or function is called, the compiler
generates code that pushes the procedure's or function's
parameters onto the stack and then generates a CALL instruction
to call the procedure or function. When you call an inline
procedure or function, the compiler generates code from the inline
directive instead of the CALL. Therefore, an inline procedure or
function is expanded every time you refer to it, just like a macro
in assembly language.

Here's a short example of two inline procedures:

procedure Disablelnterruptsi inline($FA)i
procedure Enablelnterruptsi inline($FB)i

{ eLI }
{ STI }

Function declarations

A function declaration defines a block that computes and returns
a value.

function declaration

L-I function heading ~I subroutine block 1-0-
function heading

.----,

Chapter 9, Procedures and functions 101

102

A function can't return a
structured type or a result type

procedural type.

The function heading specifies the identifier for the function, the
formal parameters (if any), and the function result type.

A function is activated by the evaluation of a function call. The
function call gives the function's identifier and actual parameters,
if any, required by the function. A function call appears as an
operand in an expression. When the expression is evaluated, the
function is executed, and the value of the operand becomes the
value returned by the function.

The statement part of the function's block specifies the statements
to be executed upon activation of the function. The block should
contain at least one assignment statement that assigns a value to
the function identifier. The result of the function is the last value
assigned. If no such assignment statement exists or if it isn't
executed, the value returned by the function is undefined.

If the function's identifier is used in a function call within the
function's block, the function is executed recursively.

Following are examples of function declarations:

function Max(A: Vector; N: Integer): Extended;
var
. X: Extended;

I: Integer;
begin

X := A[l];

for I := 2 to N do
if X < A[I] then X := A[I];

Max := X;
end;

function Power(X: Extended; Y: Integer): Extended;
var

Z: Extended;
I: Integer;

begin
Z := 1.0; I := Y;

while I > 0 do
begin

if Odd (I) then Z := Z * X;
I := I div 2;
X := Sqr(X);

end;

Language Guide

Power := Zj
endj

Like procedures, functions can be declared as near, far, forward,
external, assembler, or inline; but interrupt functions aren't
allowed.

Method declarations

See page 37 for more about
declaring methods in

objects.

The declaration of a method within an object type corresponds to
a forward declaration of that method. Therefore, somewhere after
the object-type declaration and within the same scope as the
object-type declaration, the method must be implemented by a
defining declaration.

For procedure and function methods, the defining declaration
takes the form of a normal procedure or function, but the proce­
dure or function identifier is a qualified-method identifier. This is an
object-type identifier followed by a period C.) and then by a
method identifier.

For constructor methods and destructor methods, the defining
declaration takes the form of a procedure method declaration,
except that the procedure reserved word is replaced by a con­
structor or destructor reserved word.

Optionally, a method's defining declaration can repeat the formal
parameter list of the method heading in the object type. If it does,
the defining declaration's method heading must match exactly the
order, types, and names of the parameters, and the type of the
function result, if any.

In the defining declaration of a method, there is always an impli­
cit parameter with the identifier Self, corresponding to a formal
variable parameter that possesses the object type. In the method
block, Self represents the instance whose method component was
designated to activate the method. Therefore, any changes made
to the values of the fields of Self are reflected in the instance.

The scope of a component identifier in an object type extends over
any procedure, function, constructor, or destructor block that
implements a method of the object type. The effect is the same as
if the entire method block was embedded in a with statement of
the form

with Self do begin ... end

Chapter 9, Procedures and functions 103

104

See the object-type
dec/arations of these

examples on page 34.

Constructors and
destructors

For this reason, the spellings of component identifiers, formal
method parameters, Self, and any identifiers introduced in a
method implementation must be unique.

Here are some examples of method implementations:

procedure TRectangle.Intersect(var R: TRectangle);
begin

if A.X < R.A.X then A.X := R.A.X;
if A.Y < R.A.Y then A.Y := R.A.Y;
if B.X > R.B.X then B.X := R.B.X;
if B.Y > R.B.Y then B.Y := R.B.Y;
if (A.X >= B.X) or (A.Y >= B.Y) then Init(O, 0, 0, 0);

end;

procedure TField.Display;
begin

GotoXY(X, Y);
Write (Name A

, ' " GetStr);
end;

function TNumField.PutStr(S: String): Boolean;
var

E: Integer;
begin

Val(S, Value, E);
PutStr .- (E = 0) and (Value >= Min) and (Value <= Max);

end;

Constructors and destructors are specialized forms of methods.
Used in connection with the extended syntax of the New and
Dispose standard procedures, constructors and destructors have
the ability to allocate and deallocate dynamic objects. In addition,
construCtors have the ability to perform the required initialization
of objects that contain virtual methods. Like other methods, con­
structors and destructors can be inherited, and an object can have
any number of constructors and destructors.

Constructors are used to initialize newly created objects. Usually,
the initialization is based on values passed as parameters to the
constructor. Constructors can't be virtual because the virtual­
method dispatch-mechanism depends on a constructor first
having initialized the object.

constructor declaration

Y constructor heading ~ subroutine block ~

Language Guide

Destructors can be virtual,
and often are. Destructors

seldom take any parameters.

formal parameter list

Here are some examples of constructors:

constructor TField.Copy(var F: TField);
begin

Self := F;
end;

constructor TField.Init(FX, FY, FLen: Integer; FName: String);
begin

X := FX;
Y := FY;
Len := FLen;
GetMem(Name, Length (FName) + 1);
Name" := FName;

end;

constructor TStrField.Init(FX, FY, FLen: Integer; FName: String);
begin

inherited Init(FX, FY, FLen, FName);
GetMem(Value, Len);
Value" := ";

end;

The first action of a constructor of a descendant type, such as the
preceding TStrField.lnit, is almost always to call its immediate
ancestor's corresponding constructor to initialize the inherited
fields of the object. Having done that, the constructor then ini­
tializes the fields of the object that were introduced in the
descendant.

Destructors are the counterparts of constructors, and are used to
clean up objects after their use. Typically, the cleanup consists of
disposing of any pointer fields that were allocated by the object.

destructor declaration

Y destructor heading ~ subroutine block ~

Chapter 9, Procedures and functions 105

106

destructor heading

formal parameter list

Here are some examples of destructors:

destructor TField.Done;
begin

FreeMem(Name, Length (Name A
) + 1);

end;

destructor TStrField.Done;
begin

FreeMem(Value, Len);
inherited Done;

end;

A destructor of a descendant type, such as the preceding
TStrField.Done, usually disposes of the pointer fields introduced in
the descendant, and then, as its last action, calls the correspond­
ing destructor of its immediate ancestor to dispose of any inher­
ited pointer fields of the object.

Constructor-error Turbo Pascal allows you to install a heap-error function through
recovery the HeapError variable in the System unit; see Chapter 19. This

functionality affects the way object-type constructors work.

By default, when there isn't enough memory to allocate a
dynamic instance of an object type, a constructor call using the
extended syntax of the New standard procedure generates run­
time error 203. If you install a heap-error function that returns 1
rather than the standard function result of 0, a constructor call
through New will return nil when it can't complete the request
(instead of aborting the program).

The code that performs allocation and virtual method table (VMT)
field initialization of a dynamic instance is part of a constructor's
entry sequence: When control arrives at the begin of the construc­
tor's statement part, the instance will have been allocated and
initialized already. If allocation fails and the heap-error function
returns 1, the constructor skips execution of the statement part
and returns a nil pointer. The pointer specified in the New
construct that called the constructor is set to nil.

Language Guide

Parameters

Once control arrives at the begin of a constructor's statement part,
the object-type instance is guaranteed to have been allocated and
initialized successfully. The constructor itself, however, might
attempt to allocate dynamic variables to initialize pointer fields in
the instance and, in turn, these allocations might fail. If that
happens, a well-behaved constructor should reverse any
successful allocations and deallocate the object-type instance so
that the net result becomes a nil pointer. To make such backing
out possible, Turbo Pascal implements the Fail standard
procedure that takes no parameters and can be called only from
within a constructor. A call to Fail causes a constructor to deallo­
cate the dynamic instance that was allocated upon entry to the
constructor and causes the return of a nil pointer to indicate its
failure.

When dynamic instances are allocated through the extended
syntax of New, a resulting value of nil in the specified pointer
variable indicates that the operation failed. Unfortunately, there is
no such pointer variable to inspect after the construction of a
static instance or when an inherited constructor is called. Instead,
Turbo Pascal allows a constructor to be used as a Boolean func­
tion in an expression: A return value of True indicates success,
and a return value of False indicates failure due to a call to Fail
within the constructor.

On disk you'll find two programs, NORECVER.P AS and
RECOVER.P AS. Both implement two simple object types that
contain pointers. The NORECVER version of the program does
not implement constructor-error recovery.

RECOVER.P AS demonstrates how the program can be rewritten
to implement error recovery. Notice how the corresponding de­
structors in Base.Init and Derived.lnit are used to reverse any
successful allocations before Fail is called to finally fail the
operation. Also notice that in Derived.Init, the call to Base.lnit is
coded within an expression so that the success of the inherited
constructor can be tested.

The declaration of a procedure or function specifies a formal
parameter list. Each parameter declared in a formal parameter list
is local to the procedure or function being declared. Your

Chapter 9, Procedures and functions 107

Open parameters are
described on page 7 7 7.

Value parameters

108

program can refer to it by its identifier in the block associated
wi th the procedure or function.

formal parameter list -cD-rl parameter .declaration r-rw­
~------~CD~·------~

parameter declaration
,...--------,

parameter type

There are four kinds of parameters: value, constant, variable, and
untyped. These are characterized as follows:

• A parameter group without a preceding var and followed by a
type is a list of value parameters.

• A parameter group preceded by const and followed by a type
is a list of constant parameters.

• A parameter group preceded by var and followed by a type is a
list of variable parameters.

• A parameter group preceded by var or const and not followed
by a type is a list of untyped parameters.

String and array type parameters can be open parameters. A
variable parameter declared using the OpenString identifier, or
using the string keyword in the {$P+} state, is an open-string
parameter. A value, constant, or variable parameter declared using
the syntax array of T is an open-array parameter.

A formal value parameter acts like a variable local to the proce­
dure or function, except it gets its initial value from the corres­
ponding actual parameter upon activation of the procedure or
function. Changes made to a formal value parameter don't affect
the value of the actual parameter.

A value parameter's corresponding actual parameter in a proce­
dure statement or function call must be an expression, and its
value must not be of file type or of any structured type that
contains a file type.

The actual parameter must be assignment-compatible with the
type of the formal value parameter. If the parameter type is string,
then the formal parameter is given a size attribute of 255.

Language Guide

Constant
parameters A formal constant parameter acts like a local read-only variable

that gets its value from the corresponding actual parameter upon
activation of the procedure or function. Assignments to a formal
constant parameter aren't allowed. Similarly, a formal constant
parameter can't be passed as an actual variable parameter to
another procedure or function.

Variable
parameters

File types can be passed
only as variable parameters.

For more information on
open-string parameters, see

page 717.

A constant parameter's corresponding actual parameter in a
procedure statement or function must follow the same rules as an
actual value parameter.

In cases where a formal parameter never changes its value during
the execution of a procedure or function, a constant parameter
should be used instead of a value parameter. Constant parameters
allow the implementor of a procedure or function to protect
against accidental assignments to a formal parameter. Also, for
structured- and string-type parameters, the compiler can generate
more efficient code when constant parameters are used instead of
value parameters.

A variable parameter is used when a value must be passed from a
procedure or function to the caller. The corresponding actual
parameter in a procedure statement or function call must be a
variable reference. The formal variable parameter represents the
actual variable during the activation of the procedure or function,
so any changes to the value of the formal variable parameter are
reflected in the actual parameter.

Within the procedure or function, any reference to the formal
variable parameter accesses the actual parameter itself. The type
of the actual parameter must be identical to the type of the formal
variable parameter (you can bypass this restriction through
untyped parameters).

The $P compiler directive controls the meaning of a variable
parameter declared using the string keyword. In the default {$P-}
state, string corresponds to a string type with a size attribute of
255. In the {$P+} state, string indicates that the parameter is an
open-string parameter.

Chapter 9, Procedures and functions 109

110

Untyped
parameters

If referencing an actual variable parameter involves indexing an
array or finding the object of a pointer, these actions are executed
before the activation of the procedure or function.

The rules of object-type assignment compatibility also apply to
object-type variable parameters: For a formal parameter of type
Tl, the actual parameter might be of type T2 if T2 is in the domain
of Tl. For example, given the object-type declarations found on
page 34, the TField.Copy method might be passed an instance of
TField, TStrField, TNumField, TZipField, or any other instance of a
descendant of TField.

When a formal parameter is an untyped parameter, the corres­
ponding actual parameter can be any variable or constant
reference, regardless of its type. An untyped parameter declared
using the var keyword can be modified, whereas an untyped
parameter declared using the const keyword is read-only.

Within the procedure or function, the untyped parameter is
typeless; that is, it is incompatible with variables of all other
types, unless it is given a specific type through a variable typecast.

This is an example of untyped parameters:

function Equal (var Source, Dest; Size: Word): Boolean;
type

TBytes = array[O .. 65534] of Byte;
var

N: Word;
begin

N := 0;
while (N < Size) and (TBytes(Dest) [N] = TBytes(Source) [N]) do

Inc (N);
Equal := N = Size;

end;

This function can be used to compare any two variables of any
size. For instance, given the declarations

type
TVector = array[l .. lO] of Integer;
TPoint = record

X, Y: Integer;
end;

Language Guide

Open parameters

Open-string
parameters

var
Vecl, Vec2: TVector;
N: Integer;
P: TPoint;

the function then calls

Equal (Vecl, Vec2, SizeOf(TVector))
Equal (Vecl, Vec2, SizeOf(Integer) * N)
Equal (Vec[l] , Vecl[6], SizeOf(Integer) * 5)
Equal (Vecl[l] , P, 4)

which compares Vec1 to Vee2, the first N components of Veel to
the first N components of Vee2, the first five components of Vec1
to the last five components of Vec1, and Veel[l] to P.X and Vec1[2]
toP.Y.

While untyped parameters give you greater flexibility, they can be
riskier to use. The compiler can't verify that operations on
untyped variables are valid.

Open parameters allow strings and arrays of varying sizes to be
passed to the same procedure or function.

Open-string parameters can be declared in two ways:

• Using the OpenString identifier

• Using the string keyword in the {$P+} state

The OpenString identifier is declared in the System unit. It denotes
a special string type that can only be used in the declaration of
string parameters. For reasons of backward compatibility,
OpenString isn't a reserved word-this means that OpenString can
be redeclared as a user-defined identifier.

When backward compatibility isn't an issue, a {$P+} compiler
directive can be used to change the meaning of the string
keyword. In the {$P+} state, a variable declared using the string
keyword is an open-string parameter.

For an open-string parameter, the actual parameter can be a
variable of any string type. Within the procedure or function, the
size attribute (maximum length) of the formal parameter will be
the same as that of the actual parameter.

Chapter 9, Procedures and functions 111

112

Open-string parameters behave exactly as variable parameters of
a string type, except that they can't be passed as regular variable·
parameters to other procedures and functions. They can, however,
be passed as open-string parameters again.

In this example, the 5 parameter of the Assign5tr procedure is an
open-string parameter:

procedure Assign8tr(var 8: Open8tring);
begin

8 := '0123456789ABCDEF';
end;

Because 5 is an open-string parameter, variables of any string type
can be passed to Assign5tr:

var
81: string[10];
82: string [20] ;

begin
Assign8tr (81);
Assign8tr(82);

end;

81= '0123456789' }
82 = '0123456789ABCDEF'

Within Assign5tr, the maximum length of the 5 parameter is the
same as that of the actual parameter. Therefore, in the first call to
Assign5tr, the assignment to the 5 parameter truncates the string
because the declared maximum length of 51 is 10.

When applied to an open-string parameter, the Low standard
function returns zero, the High standard function returns the
declared maximum length of the actual parameter, and the 5izeO!
function returns the size of the actual parameter.

In the next example, the Fill5tring procedure fills a string to its
maximum length with a given character. Notice the use of the
High standard function to obtain the maximum length of an
open-string parameter.

procedure Fil18tring(var 8: Open8tring; Ch: Char);
begin

S[O] := Chr(High(S)); Set string length}
FillChar(8[1], High(8), Ch); Set string characters

end;

Value and constant parameters declared using the Open5tring
identifier or the string keyword in the {$P+} state aren't open­
string parameters. Instead, such parameters behave as if they
were declared using a string type with a maximum length of 255,

Language Guide

Open-array
parameters

and the High standard function always returns 255 for such
parameters.

When open parameters are enabled (using a {$P+} compiler
directive), a formal parameter declared using the syntax

array of T

is an open-array parameter. T must be a type identifier, and the
actual parameter must be a variable of type T, or an array variable
whose element type is T. Within the procedure or function, the
formal parameter behaves as if it was declared as

array[O .. N - 1] of T

where N is the number of elements in the actual parameter. In
effect, the index range of the actual parameter is mapped onto the
integers a to N -1. If the actual parameter is.a simple variable of
type T, it's treated as an array with one element of type T.

A formal open-array parameter can be accessed by element only.
Assignments to an entire open array aren't allowed, and an open
array can be passed to other procedures and functions only as an
open-array parameter or as an untyped variable parameter.

Open-array parameters can be value, constant, and variable
parameters and have the same semantics as regular value,
constant, and variable parameters. In particular, assignments to
elements of a formal open-array constant parameter aren't
allowed, and assignments to elements of a formal open-array
value parameter don't affect the actual parameter.

For an open-array value parameter, the compiler creates a local
copy of the actual parameter within the procedure or function's
stack frame. Therefore, be careful not to overflow the stack when
passing large arrays as open-array value parameters.

When applied to an open-array parameter, the Low standard
function returns zero, the High standard function returns the
index of the last element in the actual array parameter, and the
SizeD! function returns the size of the actual array parameter.

The Clear procedure in the next example assigns zero to each
element of an array of Real, and the Sum function computes the
sum of all elements in an array of Real. Because the A parameter
in both cases is an open-array parameter, the subroutines can
operate on any array with an element type of Real.

Chapter 9, Procedures and functions 113

procedure Clear(var A: array of Real) ;
var

I: Word;
begin

for I := 0 to High(A) do A[I] := 0;
end;

function Sum(const A: array of Real): Real;
var

I: Word;
S: Real;

begin
S : = 0;
for I := 0 to High(A) do S := S + A[I];
Sum := S;

end;

When the element type of an open-array parameter is Char, the
actual parameter may be a string constant. For example, given the
procedure declaration,

procedure PrintStr(const S: array of Char);
var

I: Integer;
begin

for I := 0 to High(S) do
if SrI] <> #0 then Write(S[I]) else Break;

end;

the following are valid procedure statements:

PrintStr('Hello world') i

PrintStr (' A') ;

When passed as an open-character array, an empty string is
converted to a string with one element containing a NULL
character, so the statement PrintStr(") is identical to the statement
PrintStr(#O).

Dynamic object-type variables

114

The New and Dispose standard procedures allow a constructor call
or destructor call as a second parameter for allocating or
disposing of a dynamic object-type variable. This is the syntax:

Language Guide

New(P, Construct)

and

Dispose(P, Destruct)

where P is a pointer variable, pointing to an object type, and
Construct and Destruct are calls to constructors and destructors of
that object type. For New, the effect of the extended syntax is the
same as executing

New(P) ;
P".Construct;

And for Dispose, the effect of the extended syntax is the same as
executing

P".Destruct;
Dispose (P) ;

Without the extended syntax, you would frequently have to call
New followed by a constructor call or call a destructor followed by
a call to Dispose. The extended syntax improves readability and
generates shorter and more efficient code.

The following illustrates the use of the extended New and Dispose
syntax:

var
SP: PStrField;
ZP: PZipField;

begin
New(SP, Init(l, 1, 25, 'Firstname'));
New(ZP, Init (1, 2, 5, 'zip code', 0, 99999));
SP".Edit;
ZP".Edit;

Dispose(ZP, Done);
Dispose(SP, Done);

end;

You can also use New as afunction that allocates and returns a
dynamic variable of a specified type:

New(T)

or

New(T, Construct)

Chapter 9, Procedures and functions 115

116

In the first form, T can be any pointer type. In the second form, T
must point to an object type and Construct must be a call to a con­
structor of that object type. In both cases, the type of the function
result is T.

Here's an example:

var
Fl, F2: PField;

begin
Fl := New(PStrField, Init(l, 1, 25, 'Firstnarne')l.;
F2 := New(PZipField, Init(l, 2, 5, 'zip code', 0, 99999));

WriteLn(F1 A .GetStr);
WriteLn(F2 A .GetStr);

Dispose(F2, Done);
Dispose(Fl, Done);

end;

{ Calls TStrField.GetStr }
{ Calls TzipField.GetStr }

{ Calls TField.Done }
{ Calls TStrField.Done }

Notice that even though F1 and F2 are of type PField, the
extended-pointer assignment-compatibility rules allow F1 and F2
to be assigned a pointer to any descendant of TField. Because
GetStr and Done are virtual methods, the virtual-method
dispatch-mechanism correctly calls TStrField.GetStr,
TZipField.GetStr, TField.Done, and TStrField.Done, respectively.

Language Guide

c H

Program syntax

The program
heading

The uses clause

A p T E R

10

Programs and units

A Turbo Pascal program consists of a program heading, an
optional uses clause, and a block.

program
LQr-p-r-og-ra-m-h-e-ad-in-g---'~ t Ii ,~

L_~========~~::::'--.J --i uses clause ~

The program heading specifies the program's name and its
parameters.

program parameters

program parameters -I identifier list I-
If a program heading is present, the compiler ignores it.

The uses clause identifies all units used by the program.

uses clause

Chapter 70, Programs and units 117

Unit syntax

The unit heading

118

The System unit is always used automatically. System implements
all low-level, run-time procedures and functions to support such
features as file input and output (I/O), string handling, floating
point, dynamic memory allocation, and others.

Apart from System, Turbo Pascal implements many standard
units, such as Dos and Crt. These aren't used automatically; you
must include them in your uses clause. For example,

uses Dos, Crt; { Can now use Dos and Crt

The order of the units listed in the uses clause determines the
order of their initialization (see "The initialization part" on
page 120).

To find the unit file containing a compiled unit, the compiler
truncates the unit name listed in the uses clause to the first eight
characters and adds the file extension .TPU. For example, a unit
named MathFunctions will be stored in a file called
MATHFUNC.TPU. Even though the file name is truncated, a uses
clause must still specify the full unit identifier.

Units are the basis of modular programming in Turbo Pascal.
They're used to create libraries that you can include in various
programs without making the source code available, and to
divide large programs into logically related modules.

The unit heading specifies the unit's name.

unit heading -@D---l unit identifier r--
The unit name is used when referring to the unit in a uses clause.
The name must be unique: Two units with the same name can't be
used at the same time.

The name of a unit's source file and binary file must be the same
as the unit identifier, truncated to the first eight characters. If this

Language Guide

The interface part

The
implementation

part

isn't the case, the compiler can't find the source and/or binary file
when compiling a program or unit that uses the unit.

The interface part declares constants, types, variables, procedures,
and functions that are public; that is, available to the host (the pro­
gram or unit using the unit). The host can access these entities as
if they were declared in a block that encloses the host.

interface part

procedure and function
heading part

function heading

constant declaration part

type declaration part

procedure and function
heading part

inline directive

Unless a procedure or function is inline, the interface part only
lists the procedure or function heading. The block of the
procedure or function follows in the implementation part.

The implementation part defines the block of all public proce­
dures and functions. In addition, it declares constants, types, vari­
ables, procedures, and functions that are private; that is, they
aren't available to the host.

implementation part

Implementation)-,;:::======:::::;-r-1 declaration part

The procedure and function declarations in the interface part are
similar to forward declarations, although the forward directive
isn't specified. Therefore, these procedures and functions can be
defined and referenced in any sequence in the implementation
part.

Procedure and function headings can be duplicated from the
interface part. You don't have to specify the formal parameter list.

Chapter 10, Programs and units 119

120

The initialization
part

Indirect unit

If you do, the compiler will issue a compile-time error if the
interface and implementation declarations don't match.

The initialization part is the last part of a unit. It consists either of
the reserved word end (in which case, the unit has no initializa­
tion code) or of a statement part to be executed to initialize the
unit.

initialization part .~ I Y statement part ~
The initialization parts of units used by a program are executed in
the same order that the units appear in the uses clause.

references The uses clause in a module (program or unit) need only name
the units used directly by that module. Consider the following:

program Prog;
uses Unit2;
const a = b;
begin
end.

unit Unit2;
interface
uses Unit1;
const b = c;
implementation
end.

unit Unit1;
interface
const c = 1;
implementation
const d = 2;
end.

Unit2 is directly dependent on Unitl and Prog is directly
dependent on Unit2. Also, Prog is indirectly dependent on Unitl
(through Unit2), even though none of the identifiers declared in
Unitl are available to Prog.

To compile a module, the compiler must be able to locate all units
the module depends upon, either directly or indirectly. So, to

Language Guide

Note for C and other
language users: The uses
clauses of a Turbo Pascal

program provide the "make"
logic information traditionally
found in make or project files
of other languages. With the

uses clause, Turbo Pascal
can build all the depen­

dency information into the
module itself and reduce the

chance for error.

Circular unit

compile Prog, the compiler must be able to locate both Unitl and
Unit2, or an error occurs.

When changes are made in the interface part of a unit, other units
using the unit must be recompiled. If you use Make or Build, the
compiler does this for you automatically. If changes are made
only to the implementation or the initialization part, other units
that use the unit need not be recompiled. In the previous example,
if the interface part of Unitl is changed (for example, C = 2) Unit2
must be recompiled, but changing the implementation part (for
example, d = 1) doesn't require recompiling Unit2.

Turbo Pascal can tell when the interface part of a unit has
changed by computing a unit version number when the unit is
compiled. In the preceding example, when Unit2 is compiled, the
current version number of Unitl is saved in the compiled version
of Unit2. When Prog is compiled, the version number of Unitl is
checked against the version number stored in Unit2. If the version
numbers don't match (indicating that a change was made in the
interface part of Unitl because Unit2 was compiled), the compiler
reports an error or recompiles Unit2, depending on the mode of
com pila tion.

references If you place a uses clause in the implementation section of a unit,
you hide the inner details of the unit referenced in the uses
clause; the referenced unit is private and not available to the
program or unit using the unit it's referenced in. You can use this
technique to construct mutually-dependent units.

The following program demonstrates how two units can "use"
each other:

Chapter 70, Programs and units

program Circular;
{ Display text using WriteXY }

uses
Crt, Display;

begin
ClrScr;
WriteXY{l, 1, 'Upper left corner of screen');
WriteXY{1000, 1000, 'Way off the screen');
WriteXY{81 - Length{'Back to reality'), 15, 'Back to reality');

end.

121

122

The main program, Circular, uses a unit named Display:

unit Display;
{ Contains a simple video display routine

interface

procedure WriteXY(X, Y: Integer; Message: String);

implementation
uses

Crt, Error;

procedure WriteXY(X, Y: Integer; Message: String);
begin

if (X in [1 .. 80)) and (Y in [1 .. 25) then
begin

GoToXY(X, Y);
Write (Message) ;

end

else
ShowError('Invalid WriteXY coordinates');

end;

end.

The Display unit declares the WriteXY procedure in its interface
section. The WriteXY procedure writes a message on the screen.
The program Circular specifies the content and screen position of
the message in the parameters passed to WriteXY. If the screen
coordinates aren't onscreen, WriteXY calls the ShowError pro­
cedure.

ShowError isn't in the Display unit, but in another unit, Error,
referenced in the uses section of the Display unit's implementation
section. This is the Error unit:

unit Error;
{ Contains a simple error-reporting routine

interface

procedure ShowError(ErrMsg: String)

implementation

uses
Display;

Language Guide

Sharing other
declarations

procedure ShowError(ErrMsg: String);
begin

WriteXY(l, 25, 'Error: ' + ErrMsg);
end;

end.

The Error unit is somewhat unusual: its one declared procedure,
ShowError, uses the WriteXY procedure declared in the Display
unit, the unit that calls the ShowError procedure. The uses clause
in the implementation sections of both the Display and Error units
refer to each other. This is possible because Turbo Pascal can
compile complete interface sections for both. The compiler accepts
a reference to a partially-compiled unit in the implementation
section of another unit, as long as neither unit's interface section
depends upon the other. Therefore, the units follow Pascal's strict
rules for declaration order.

If the interface sections are interdependent, you get a circular
unit-reference error.

If you want to modify the WriteXY and ShowError procedures to
take an additional parameter that specifies a rectangular window
onscreen, you might write this:

procedure writeXY(SorneWindow: WindRec; X, Y: Integer;
Message: String);

procedure ShowError(SomeWindow: WindRec; ErrMsg: String);

These procedures are declared in the interface sections of different
units. Because both need to use the WindRec type, WindRec can't
be declared in either of the interface sections-that would make
them depend on each other. The solution is to create a third unit
that contains only the definition of the window record:

unit WindData;
interface
type

WindRec = record
Xl, Yl, X2, Y2: Integer;
ForeColor, BackColor: Byte;
Active: Boolean;

end;
implementation
end.

You can now add WindData to the uses clause in interface
sections of both the Display and Error units. Both of these units

Chapter 70, Programs and units 123

124

can use the new record type, but Display and Error still refer to
each other only in their respective implementation sections.

Mutually-dependent units can be useful in special situations, but
use them judiciously. If you use them when the aren't needed, .
they can make your program harder to maintain and more
susceptible to errors.

Language Guide

p A R T

2

The run-time library

125

126 Language Guide

c H A p T E R

1 1

Overview of the run-time library

To read about the Dos and
WinOos units, see Chapter 75,

"Interfacing with ~OS. "

Turbo Pascal's run-time library is made up of all the standard
units found in the TURBO.TPL file: System, Dos, Overlay, Printer,
and Crt. This chapter briefly describes each of these units. They
are loaded into memory with Turbo Pascal and are readily
available to your programs.

Five other units that aren't in TURBO.TPL but that come with
Turbo Pascal are Strings, WinDos, Graph, Turb03, and Graph3. They
are described briefly here also.

System unit

The System unit implements low-level, run-time support routines
for all built-in features, such as file I/O, string handling, floating
point, and dynamic memory allocation. The System unit is used
automatically by any unit or program and doesn't need to be
referred to in a uses clause.

Dos and WinDos units

The Dos and WinDos units implement a number of very useful
operating system and file-handling routines. None of the routines
in these units are defined by Standard Pascal, so they have been
placed in their own modules. For a complete description of DOS
operations, refer to a DOS programmer's reference.

Chapter 7 7, OveNiew of the run-time library 127

For information on the Crt
unit, see page 742 in

Chapter 73, "Input and
output. "

For more about the Printer
unit, see page 747 in

Chapter 73, "Input and
output."

To read about the Overlay
unit, see Chapter 78, "Using

overlays. "

See page 767 in Chapter 76,
"Using nUl/-terminated

strings," for information about
using the Strings unit.

Read about the Graph unit
in Chapter 77, "Using the

Borland Graphics Interface. "

You'll find information on the
Turbo3 and Graph3 units in

the online file TURB03.INT.

128

Crt unit

The Crt unit permits you to write programs that send their screen
output directly to the BIOS or to video memory. The result is
increased speed and flexibility.

Printer unit

The Printer unit lets you send standard Pascal output to your
printer using Write and Writeln.

Overlay unit

The Overlay unit enables you to reduce your program's total run­
time memory requirements. In fact, you can write programs that
are larger than the total available memory because only parts of
your program will reside in memory at any given time.

Strings unit

With Turbo Pascal's extended syntax and the Strings unit, your
programs can use null-terminated strings, so that they are more
compatible with any Windows programs you write.

Graph unit

The Graph unit supplies a set of fast, powerful graphics routines.
It implements the device-independent Borland graphics handler
that supports CGA, EGA, VGA, Hercules, AT&T 400, MCGA,
3270 PC, and 8514 graphics. The Graph unit isn't built into
TURBO.TPL, but is on the same disk with the .BGI (Borland
Graphic Interface) and .CHR files.

Turbo3 and Graph3 units

These units are provided for backward compatibility only. Turbo3
contains two variables and several procedures no longer '
supported by Turbo Pascal. Graph3 supports the full set of
graphics routines-basic, advanced, and turtlegraphics-from
version 3.0.

Language Guide

c H A p T E R

12

Standard procedures and functions

There are other standard
procedures and functions
a/so. You can read about

them in Chapter 13, "Input
and output. "

This chapter briefly describes standard (built-in) procedures and
functions in Turbo Pascal and the predeclared variables defined in
the System unit. For in-depth information about a particular
procedure, function, or predeclared variable, look it up in the
alphabetical listing in Chapter I, "Library reference," in the
Programmer's Reference.

This chapter covers

• Flow-control procedures
• Transfer functions
• Arithmetic functions
• Ordinal procedures and functions
• String procedures and functions
• Dynamic-allocation procedures and functions
• Pointer and address functions
• Miscellaneous procedures and functions,
• Predeclared variables in the System unit

Standard procedures and functions are predeclared. Because all
predeclared entities act as if they were declared in a block sur­
rounding the program, you can redefine the same identifier
within the program.

Chapter 72, Standard procedures and functions 129

Flow-control These are the procedures that change the flow of logic in your
procedures program:

Table 12.1
Flow-control procedures Procedure

Break

Continue

Exit

Halt

RunError

Description

Terminates a for, while, or repeat statement.

Continues with the next iteration of a for, while, or
repeat statement.

Exits immediately from the current block.

Stops program execution and returns to the operating
system.

Stops program execution and generates a run-time
error.

Transfer functions The Transfer functions are listed here:

Table 12.2
Transfer functions

The transfer procedures Pack
and Unpack, as defined in

Standard Pascal, are not
implemented by Turbo

Pascal.

Function

Chr

Ord

Round

Trunc

Description

Returns a character of a specified ordinal number.

Returns the ordinal number of an ordinal-type value.

Rounds a real-type value to a type Longint value.

Truncates a real-type value to a type Longint value.

Arithmetic functions These functions are useful in performing arithmetic operations.

130

Table 12.3
Arithmetic functions

When you're compiling in numeric processing mode, {$N+}, the
return values of the floating-point routines in the System unit
(Sqrt, Pi, Sin, and so on) are of type Extended instead of Real.

Function

Abs

ArcTan

Cos

Exp

Frac

Int

Ln

Pi

Description

Returns the absolute value of the argument.

Returns the arctangent of the argument.

Returns the cosine of the argument.

Returns the exponential part of the argument.

Returns the fractional part of the argument.

Returns the integer part of the argument.

Returns the natural logarithm of the argument.

Returns the value of Pi (3.1415926535897932385).

Language Guide

Table 12.3: Arithmetic functions (continued)

Sin

Sqr

Sqrt

Returns the sine of the argument.

Returns the square of the argument.

Returns the square root of the argument.

Ordinal procedures The ordinal routines operate on the ordinality of a variable.
and functions

Table 12.4
Ordinal procedures and

functions

String procedures and
functions

Table 12.5
String procedures and

functions

Procedure
or function

Dee

Ine

High

Low

Odd

Pred

Suee

Description

Decrements a variable.

Increments a variable.

Returns the highest value in the range of the
argument.

Returns the lowest value in the range of the
argument.

Tests if the argument is an odd number.

Returns the predecessor of the argument.

Returns the successor of the argument.

These procedures and functions are used on the traditional
Pascal-style strings:

Procedure
or function Description

Coneat Concatenates a sequence of strings.

Copy Returns a substring of a string.

Delete Deletes a substring from a string.

Insert Inserts a substring into a string.

Length Returns the dynamic length of a string.

Pas Searches for a substring in a string.

Str Converts a numeric value to its string
representation.

Val Converts the string value to its numeric
representation.

Chapter 72, Standard procedures and functions 131

132

Dynamic-allocation
procedures and

functions

Table 12.6
Dynamic-allocation

procedures and functions

The dynamic-allocation procedures and functions are used to
manage the heap-a memory area that occupies all or some of the
free memory left when a program is executed. Heap-management
techniques are discussed in the section "The heap manager" in
Chapter 19.

Procedure
or function

Dispose

FreeMem

GetMem

MaxAvail

MemAvail

New

Description

Disposes of a dynamic variable.

Disposes of a dynamic variable of a given size.

Creates a new dynamic variable of a given size and
sets a pointer variable to point to it.

Returns the size of the largest contiguous free block
in the heap, indicating the size of the largest dynam­
ic variable that can be allocated at the time of the
call to MaxAvail.

Returns the number of free bytes of heap storage
available.

Creates a new dynamic variable and sets a pointer
variable to point to it.

Pointer and address The pointer and address functions are listed in this table:
functions
Table 12.7

Pointer and address
functions

Function

Addr

Assigned

CSeg

DSeg

Ofs

Ptr

Seg

SPtr

SSeg

Description

Returns the address of a specified object.

Tests to determine if a pointer or procedural variable is
nil.

Returns the current value of the C5 register.

Returns the current value of the D5 register.

Returns the offset of a specified object.

Converts a segment base and an offset address to a
pointer-type value.

Returns the segment of a specified object.

Returns the current value of the 5P register.

Returns the current value of the 55 register.

Language Guide

Miscellaneous routines Listed below are the procedures and functions that don't fit in any
other category:

Table 12.8
Miscellaneous procedures

and functions

Procedure
or function

Exclude

FmChar

Hi

Include

La

Move

ParamCount

ParamStr

Random

Randomize

SizeO!

Swap

TypeO!

UpCase

Description

Excludes an element from a set.

Fills a specified number of contiguous bytes with a
specified value.

Returns the high-order byte of the argument.

Includes an element in a set.

Returns the.1ow-order byte of the argument.

Copies a specified number of contiguous bytes from
a source range to a destination range.

Returns the number of parameters passed to the
program on the command line.

Returns a specified command-line parameter.

Returns a random number.

Initializes built-in random generator with a random
value.

Returns number of bytes occupied by the argument.

Swaps the high- and low-order bytes of the
argument.

Points to an object type's virtual method table.

Converts a character to uppercase.

Predeclared variables The System unit also supplies several predeclared variables:

Table 12.9
Predeclared variables in the

System unit

Variable

ErrorAddr
ExitCode
ExitProc
FileMode
FreeList
FreeZero
HeapEnd
HeapError
HeapOrg
HeapPtr
Input
InOutRes
Output

Type

Pointer
Integer
Pointer
Byte
Pointer
Pointer
Pointer
Pointer
Pointer
Pointer
Text
Integer
Text

Chapter 12, Standard procedures and functions

Description

Run-time error address
Exit code
Exit procedure
File open mode
Free heap-block list
Free zero
Heap end
Heap-error function
Heap origin
Heap pointer
Input standard file
IIO result buffer
Output standard file

133

134

Table 12.9: Predeclared variables in the System unit (continued)

OvrCodeList Word Overlay code-segment list
OvrDebugPtr Pointer Overlay-debugger hook
OvrDosHandle Word Overlay DOS handle
OvrEmsHandle Word Overlay EMS handle
OvrHeapEnd Word Overlay-buffer end
OvrHeapOrg Word Overlay-buffer origin
OvrHeapPtr Word Overlay-buffer pointer
OvrHeapsize Word Initial overlay-buffer size
OvrLoadList Word Loaded-overlays list
Prefixseg Word Program Segment Prefix
Randseed Longint Random seed
Sa veIn tOO Pointer Saved interrupt $00
saveInt02 Pointer Saved interrupt $02
saveIntlB Pointer Saved interrupt $1B
saveInt21 Pointer Saved interrupt $21
saveInt23 Pointer Saved interrupt $23
saveInt24 Pointer Saved interrupt $24
saveInt34 Pointer Saved interrupt $34
saveInt35 Pointer Saved interrupt $35
saveInt36 Pointer Saved interrupt $36
saveInt37 Pointer Saved interrupt $37
saveInt38 Pointer Saved interrupt $38
saveInt39 Pointer Saved interrupt $39
saveInt3A Pointer Saved interrupt $3A
saveInt3B Pointer Saved interrupt $3B
saveInt3C Pointer Saved interrupt $3C
saveInt3D Pointer Saved interrupt $3D
saveInt3E Pointer Saved interrupt $3E
saveInt3F Pointer Saved interrupt $3F
saveInt75 Pointer Saved interrupt $75
seg0040 Word Selector for segment $0040
segAOOO Word Selector for segment $AOOO
segBOOO Word Selector for segment $BOOO
segB800 Word Selector for segment $B800
selectorInc Word Selector increment
5 tackLim it Word Minimum stack pointer
Test8087 Byte 80x87 test result

For more information about these variables,look them up in the
alphabetical listing in Chapter I, "Library reference," of the
Programmer's Reference.

Language Guide

c H

Table 13.1
Input and output procedures

and functions

A p T E R

13

Input and output

This chapter describes the standard (or built-in) input and output
(I/O) procedures and functions of Turbo Pascal; you'll find them
in the System unit. It also discusses input and output issues such
as file input and output, devices, using the Crt unit, printing, and
text-file device drivers.

Procedure
or function

Append

Assign

BlockRead

BlockWrite

ChDir

Close

Eo!

Eoln

Erase

FilePos

FileSize

Flush

GetDir

Description

Opens an existing text file for appending.

Assigns the name of an external file to a file variable.

Reads one or more records from an untyped file.

Writes one or more records into an untyped file.

Changes the current directory.

Closes an open file.

Returns the end-of-file status of a file.

Returns the end-of-line status of a text file.

Erases an external file.

Returns the current file position of a typed or
untyped file.

Returns the current size of a file; not used for text
files.

Flushes the buffer of an output text file.

Returns the current directory of a specified drive.

Chapter 13, Input and output 135

Table 13.1: Input and output procedures and functions (continued)

IOResult

MkDir

Read

Readln

Rename

Reset

Rewrite

RmDir

Seek

SeekEof

SeekEoln

SetTextBuf

Truncate

Write

Writeln

Returns an integer value that is the status of the last
110 function performed.

Creates a subdirectory.

Reads one or more values from a file into one or
more variables.

Does what a Read does and then skips to the
beginning of the next line in the text file.

Renames an external file.

Opens an existing file.

Creates and opens a new file.

Removes an empty subdirectory.

Moves the current position of a typed or untyped
file to a specified component. Not used with text
files. I

Returns the end-of-file status of a text file.

Returns the end-of-line status of a text file.

Assigns an 1/ 0 buffer to a text file.

Truncates a typed or untyped file at the current file
position.

Writes one or more values to a file.

Does the same as a Write, and then writes an end­
of-line marker to the text file.

File input and output

The syntax for writing file
types is given in the section

"File types" on page 42.

136

A Pascal file variable is any variable whose type is a file type.
There are three classes of Pascal files: typed, text, and untyped.

Before a file variable can be used, it must be associated with an
external file through a call to the Assign procedure. An external
file is typically a named disk file, but it can also be a device, such
as the keyboard or the display. The external file stores the infor­
mation written to the file or supplies the information read from
the file.

Once the association with an external file is established, the file
variable must be "opened" to prepare it for input or output. An
existing file can be opened via the Reset procedure, and a new file
can be created and opened via the Rewrite procedure. Text files

Language Guide

Text files
In Turbo Pascal, the type

Text is distinct from the type
file of Char.

opened with Reset are read-only, and text files opened with
Rewrite and Append are write-only. Nontext files always allow
both reading and writing whether or not they were opened with
Reset or Rewrite.

Every file is a linear sequence of components, each of which has
the component type (or record type) of the file. Each component
has a component number. The first component of a file is con­
sidered to be component zero.

Files are normally accessed sequentially; that is, when a component
is read using the standard procedure Read or written using the
standard procedure Write, the current file position moves to the
next numerically ordered file component. Typed files and
untyped files can also be accessed randomly via the standarq
procedure Seek, which moves the current file position to a speci­
fied component. The standard functions FilePos and FileSize can be
used to determine the current file position and the current file
size.

When a program completes processing a file, the file must be
closed using the standard procedure Close. After a file is closed, its
associated external file is updated. The file variable can then be
associated with another external file.

By default, all calls to standard I/O procedures and functions are
automatically checked for errors: If an error occurs, the program
terminates, displaying a run-time error message. This automatic
checking can be turned on and off using the {$I+} and {$I-} com­
piler directives. When I/O checking is off-that is, when a proce­
dure or function call is compiled in the {$I-} state-an I/O error
doesn't cause the program to halt. To check the result of an I/O
operation, you must call the standard function IOResult instead.

):' ou must call the IOResult function to clear whatever error might
have occurred, even if you aren't interested in the error. If you
don't and {$I+} is the current state, the next I/O function call fails
with the lingering IOResult error.

This section summarizes 1/ a using file variables of the standard
type Text.

When a text file is opened, the external file is interpreted in a
special way: It's considered to represent a sequence of characters
formatted into lines, where each line is terminated by an end-of-

Chapter 13, Input and output 137

138

line marker (a carriage-return character, possibly followed by a
linefeed character).

For text files, there are special forms of Read and Write that let you
read and write values that aren't of type Char. Such values are
automatically translated to and from their character representa­
tion. For example, Read(F, 1), where I is a type Integer variable,
reads a sequence of digits, interprets that sequence as a decimal
integer, and stores it in 1.

Turbo Pascal defines two standard text-file variables, Input and
Output. The standard file variable Input is a read-only file
associated with the operating system's standard input file
(typically the keyboard). The standard file variable Output is a
write-only file associated with the operating system's standard
output file (typically the display). Input and Output are
automatically opened before a program begins execution, as if the
following statements were executed:

Assign(Input, ");
Reset (Input) ;
Assign (Output, ");
Rewrite (Output) ;

Input and Output are automatically closed after a program finishes
executing.

If a program uses the Crt standard unit, Input and Output no
longer refer to the standard input and output files.

Some of the standard I/O routines that work on text files don't
need to have a file variable explicitly given as a parameter. If the
file parameter is omitted, Input or Output is assumed by default,
depending on whether the procedure or function is input- or
output-oriented. For example, Read(X) corresponds to Read(Input,
X) and Write(X) corresponds to Write(Output, X).

If you do specify a file when calling one of the input or output
routines that work on text files, the file must be associated with an
external file using Assign, and opened using Reset, Rewrite, or
Append. A run-time error occurs if you pass a file that was opened
with Reset to an output-oriented procedure or function. Likewise,
it's an error to pass a file that was opened with Rewrite or Append
to an input-oriented procedure or function.

Language Guide

Untyped files

The FileMode
variable

New files created using
Rewrite are always opened

in read/write mode,
corresponding to

FileMode=2.

Untyped files are low-level I/O channels primarily used for direct
access to any disk file regardless of type and structuring. An un­
typed file is declared with the word file and nothing more. For
example,

var
DataFile: file;

For untyped files, the Reset and Rewrite procedures allow an extra
parameter to specify the record size used in data transfers. For
historical reasons, the default record size is 128 bytes. A record
size of 1 is the only value that correctly reflects the exact size of
any file, because no partial records are possible when the record
size is 1.

Except for Read and Write, all typed-file standard procedures and
functions are also allowed on untyped files. Instead of Read and
Write, two procedures called BlockRead and BlockWrite are used for
high-speed data transfers.

The FileMode variable defined by the System unit determines the
access code to pass to DOS when typed and untyped files (not text
files) are opened using the Reset procedure.

The default FileMode is 2, which allows both reading and writing.
Assigning another value to FileMode causes all subsequent Resets
to use that mode.

The range of valid FileMode values depends on the version of DOS
in use. For all versions, however, the following modes are
defined:

o Read only
1 Write only
2 Read/Write

DOS version 3.x and higher defines additional modes, which are
primarily concerned with file-sharing on networks. (For more
details, see your DOS programmer's reference manual.)

Chapter 73, Input and output 139

Devices in Turbo Pascal

DOS devices

Turbo Pascal and the DOS operating system regard external
hardware, such as the keyboard, the display, and the printer, as
devices. From the programmer's point of view, a device is treated
as a file and is operated on through the same standard procedures
and functions as files.

Turbo Pascal supports two kinds of devices: DOS devices and
text-file devices.

DOS devices are implemented through reserved file names that
have a special meaning attached to them. DOS devices are com­
pletely transparent-in fact, Turbo Pascal isn't even aware when a
file variable refers to a device instead of a disk file. For example,
the program

var
Lst: Text;

begin
Assign(Lst, 'LPT1');
Rewrite(Lst);
Writeln(Lst, 'Hello World ... ');
Close(Lst) ;

end.

writes the string "Hello World ... " on the printer, even though the
syntax for doing so· is exactly the same as for a disk file.

The devices implemented by DOS are used for obtaining or
presenting legible input or output. Therefore, DOS devices are
normally used only in connection with text files. On rare occa­
sions, untyped files can also be useful for interfacing with DOS
devices.

The CON device CON refers to the CONsole device, in which output is sent to the
display, and input is obtained from the keyboard. The Input and
Output standard files and all files assigned an empty name refer to
the CON device when input or output isn't redirected.

Input from the CON device is line-oriented and uses the line­
editing facilities described in your DOS manual. Characters are
read from a line buffer, and when the buffer becomes empty, a
new line is input.

140 Language Guide

The LPTl, LPT2, and
LPT3 devices

The COM 1 and COM2
devices

The NUL device

Text-file devices

An end-of-file character is generated by pressing Ctrl+Z, after
which the Eo! function will return True.

The line-printer devices are the three possible printers you can
use. If only one printer is connected, it's usually referred to as
LPTl, for which the synonym can also be used.

The line-printer devices are output-only devices-an attempt to
Reset a file assigned to one of these generates an immediate end­
of-file.

The standard unit Printer declares a text-file variable called Lst,
and makes it refer to the LPTI device. To easily write something
on the printer from one of your programs, include Printer in the
program's uses clause, and use Write(Lst, ...) and Writeln(Lst, .. .) to
produce your output.

The communication-port devices are the two serial communi­
cation ports. The synonym AUX can be used instead of COMl.

The NUL device ignores anything written to it, and generates an
immediate end-of-file when read from. You should use this when
you don't want to create a particular file, but the program
requires an input or output file name.

Text-file devices are used to implement devices unsupported by
DOS or to provide another set of features similar to those
supplied by another DOS device. A good example of a text-file
device is the CRT device implemented by the Crt standard unit. It
provides an interface to the display and the keyboard, like the
CON device in DOS, but the CRT device is much faster and
supports such invaluable features as color and windows.

Unlike DOS devices, text-file devices have no reserved file names;
in fact, they have no file names at all. Instead, a file is associated
with a text-file device through a customized Assign procedure.
For example, the Crt standard unit implements an AssignCrt
procedure that associates text files with the CRT window.

Chapter 13, Input and output 141

Input and output with the Crt unit

Using the Crt unit

Windows

142

The Crt unit implements a range of powerful routines that give
you full control of your PC's features, such as screen mode
control, extended keyboard codes, colors, windows, and sound.
Crt can only be used in programs that run on IBM PCs, A Ts,
PS/2s, and true compatibles.

One of the major advantages to using Crt is the added speed and
flexibility of screen output operations. Programs that don't use
the Crt unit send their screen output through DOS, which adds a
lot of overhead. With the Crt unit, output is sent directly to the
BIOS or, for even faster operation, directly to video memory.

To use the Crt unit, include it in your program's uses clause as
you would any other unit:

uses Crt;

The initialization code of the Crt unit assigns the Input and Output
standard text files to refer to the CRT instead of to DOS's standard
input and output files. These statements execute at the beginning
of a program:

AssignCrt(Input); Reset (Input) ;
AssignCrt(Output); Rewrite (Output) ;

This means that I/O redirection of the Input and Output files is no
longer possible unless these files are explicitly assigned back to
standard input and output by executing this:

Assign(Input, "); Reset (Input) ;
Assign (Output, "); Rewrite (Output) ;

Crt supports a simple yet powerful form of windows. The Window
procedure lets you define a window anywhere on the screen.
When you write in such a window, the window behaves exactly
as if you were using the entire screen, leaving the rest of the
screen untouched. In other words, the screen outside the window
isn't accessible. Inside the window, lines can be inserted and
deleted, the cursor wraps around at the right edge, and the text
scrolls when the cursor reaches the bottom line.

Language Guide

All screen coordinates, except the ones used to define a window,
are relative to the current window, and screen coordinates (1,1)
correspond to the upper left corner of the window.

The default window is the entire screen.

Special charactArs When writing to Output or a file that has been assigned to the
CRT, the following control characters have special meanings:

Table 13.2
Control characters Char

#7

#8

#10

#13

Name

BELL

BS

LF

CR

Description

Emits a beep from the internal speaker.

Moves the cursor left one column. If the cursor is
already at the left edge of the current window,
nothing happens.

Moves the cursor down one line. If the cursor is
already at the bottom of the current window, the
window is scrolled up one line.

Returns the cursor to the left edge of the current
window.

Line input When reading from Input or from a text file that has been assigned
to Crt, text is input one line at a time. The line is stored in the text
file's internal buffer, and when variables are read, this buffer is
used as the input source. Whenever the buffer has been emptied,
a new line is input.

When entering lines, the following editing keys are available:

Table 13.3
Line input editing keys

Chapter 73, Input and output

Editing key Description

Backspace

Esc

Enter

Ctrl+S

Ctrl+D

Ctrl+A

Ctrl+F

Ctrl+Z

Deletes the last character entered.

Deletes the entire input line.

Terminates the input line and stores the end-of-line
marker (carriage return/line feed) in the buffer.

Same as Backspace.

Recalls one character from the last input line.

Same as Esc.

Recalls the last input line.

Terminates the input line and generates an end-of-file
marker.

143

Crt procedures
and functions

Table 13.4
Crt unit procedures and

functions

See the Programmer's
Reference for more details

about using the Crt
procedures and functions.

Ctrl+Zwill only generate an end-of-file marker if the CheckEOF
variable has been set to True; it's False by default.

To test keyboard status and input single characters under
program control, use the KeyPressed and ReadKey functions.

The following table lists the procedures and functions defined in
the Crt unit.

Procedure
or function

AssignCrt

ClrEol

ClrScr

Delay

Description

Associates a text file with the CRT window.

Clears all the characters from the cursor position to
the end of the line.

Clears the screen and returns cursor to the upper
left-hand corner.

Delays a specified number of milliseconds.

DelLine Deletes the line containing the cursor and moves all
lines below that line one line up. The bottom line is
cleared.

GotoXY Positions the cursor. X is the horizontal position. Y is
the vertical position.

High Video Selects high-intensity characters.

InsLine Inserts an empty line at the cursor position.

KeyPressed Returns True if a key has been pressed on the
keyboard.

Low Video Selects low-intensity characters.

Norm Video Selects normal characters.

NoSound Turns off the internal speaker.

Sound Starts the internal speaker.

TextBackground Selects the background color.

TextColor Selects the foreground character color.

TextMode Selects a specific text mode.

Window Defines a text window onscreen.

ReadKey Reads a character from the keyboard.

144 Language Guide

Crt unit constants

Table 13.4: Crt unit procedures and functions (continued)

WhereX Returns the x-coordinate of the current cursor
location, relative to the current window.

WhereY Returns the y-coordinate of the current cursor
location, relative to the current window.

and variables The Crt unit has several constants that your programs can use. To
learn more about using them, look them up in Chapter 1 of the
Programmer's Reference. You'll find them grouped like this:

Table 13.5
Crt unit constants

Table 13.6
crt unit variables

Constant group Description

Crt mode constants Graphics-mode constants used as parameters
for the TextMode procedure.

Text color constants Constants used to set the colors of the CRT
window using the TextColor and
TextBackground procedures.

For example, to find the value of a constant that will color the text
in your program red, look up Text Color constants, and you'll
discover that the constant Red has a value of 4.
These are the variables in the Crt unit and the functions they
perform:

Variable

CheckBreak

CheckEOF

CheckSnow

Direct Video

LastMode

TextAttr

WindMin

WindMax

Description

Enables and disables checks for Ctrl+Break.

Enables and disables the end-of-file character.

Enables and disables "snow checking".

Enables and disables direct memory access for Write
and Writeln statements that output to the screen.

Stores the current video mode when each time
TextMode is called.

Stores the currently-selected text attributes.

Stores the screen coordinates of the upper-left comer
of the current window.

Stores the screen coordinates of the lower-right
corner of the current window.

Chapter 73, Input and output 145

Text-file device drivers

146

Turbo Pascal lets you define your own text-file device drivers. A
text-file device driver is a set of four functions that completely
implement an interface between Turbo Pascal's file system and
some device.

The four functions that define each device driver are Open, InOut,
Flush, and Close. The function header of each function is

function DeviceFunc(var F: TTextRec): Integer;

where TTextRec is the text file record type defined in the "Internal
data formats," section in Chapter 19. Each function must be
compiled in the {$F+} state to force it to use the far call model. The
return value of a device-interface function becomes the value
returned by IOResult. If the return value is zero, the operation was
successful.

To associate the device-interface functions with a specific file, you
must write a customized Assign procedure (like the AssignCrt
procedure in the Crt unit). The Assign procedure must assign the
addresses of the four device-interface functions to the four func­
tion pointers in the text file variable. In addition, it should store
the fmClosed "magic" constant in the Mode field, store the size of
the text file buffer in BufSize, store a pointer to the text file buffer
in BufPtr, and clear the Name string.

For example, assuming that the four device-interface functions are
called DevOpen, DevlnOut, DevFlush, and DevClose, the Assign
procedure might look like this:

procedure AssignDev(var F: Text);
begin

with TextRec(F) do
begin

Mode := fmClosed;
BufSize := SizeOf(Buffer);
BufPtr := @Buffer;
OpenFunc := @DevOpen;
InOutFunc := @DevInOut;
FlushFunc := @DevFlush;
CloseFunc := @DevClose;
Name[O] := #0;

end;
end;

Language Guide

The Open
function

The InOut

The device-interface functions can use the UserData field in the file
record to store private information. This field isn't modified by
the Turbo Pascal file system at any time.

The Open function is called by the Reset, Rewrite, and Append
standard procedures to open a text file associated with a device.
On entry, the Mode field contains fmlnput, fmOutput, or fmlnOut to
indicate whether the Open function was called from Reset, Rewrite,
or Append.

The Open function prepares the file for input or output, according
to the Mode value. If Mode specifiedfmlnOut (indicating that Open
was called from Append), it must be changed to fmOutput before
Open returns.

Open is always called before any of the other device-interface
functions. For that reason, AssignDev only initializes the OpenFunc
field,leaving initialization of the remaining vectors up to Open.
Based on Mode, Open can then install pointers to either input- or
output-oriented functions. This saves the InOut, Flush functions
and the Close procedure from determining the current mode.

function The InOut function is called by the Read, Readln, Write, Writeln,
Eof, Eoln, SeekEof, SeekEoln, and Close standard procedures and
functions whenever input or output from the device is required.

The Flush function

When Mode is fmlnput, the InOut function reads up to BufSize
characters into BufPtrA , and returns the number of characters read
in BufEnd. In addition, it stores zero in BufPos. If the InOut
function returns zero in BufEnd as a result of an input request, Eof
becomes True for the file.

When Mode is fmOutput, the InOut function writes BufPos
characters from BufPtrA , and returns zero in BufPos.

The Flush function is called at the end of each Read, Readln, Write,
and Writeln. It can optionally flush the text file buffer.

Chapter 13, Input and output 147

The Close

If Mode is jmlnput, the Flush function can store zero in BufPos and
BufEnd to flush the remaining (unread) characters in the buffer.
This feature is seldom used.

If Mode is jmOutput, the Flush function can write the contents of
the buffer exactly like the InOut function, which ensures that text
written to the device appears on the device immediately. If Flush
does nothing, the text won't appear on the device until the buffer
becomes full or the file is closed.

function The Close function is called by the Close standard procedure to
close a text file associated with a device. (The Reset, Rewrite, and
Append procedures also call Close if the file they are opening is
already open.) If Mode is jmOutput, then before calling Close,
Turbo Pascal's file system calls the InOut function to ensure that
all characters have been written to the device.

148 Language Guide

c H

Chapter 74, Using the 80x87

A p T E R

14

Using the 80x87

There are two kinds of numbers you can work with in Turbo
Pascal: integers (Shortint, Integer, Longint, Byte, Word) and reals
(Real, Single, Double, Extended, Camp). Reals are also known as
floating-point numbers. The 80x86 family of processors is
designed to handle integer values easily, but handling reals is
considerably more difficult. To improve floating-point perform­
ance, the 80x86 family of processors has a corresponding family of
math coprocessors, the 80x87s.

The 80x87 is a special hardware numeric processor that can be
installed in your PC. It executes floating-point instructions very
quickly, so if you use floating point often, you'll probably want a
numeric coprocessor or a 80486 processor, which has a numeric
coprocessor built in.

Turbo Pascal provides optimal floating-point performance
whether or not you have an 80x87:

• For programs running on any PC, with or without an 80x87,
Turbo Pascal provides the Real type and an associated library of
software routines that handle floating-point operations. The
Real type occupies 6 bytes of memory, providing a range of 2.9
x 10-39 to 1.7 X 1038 with 11 to 12 significant digits. The software
floating-point library is optimized for speed and size, trading in
some of the fancier features provided by the 80x87 processor .

• If you need the added precision and flexibility of the 80x87, you
can instruct Turbo Pascal to produce code that uses the 80x87
chip. This gives you access to four additional real types (Single,

149

150

Double, Extended, and Camp), and an Extended floating-point
range of 3.4 x 10-4951 to 1.1 X 104932 with 19 to 20 significant
digits.

You switch between the two different models of floating-point
code generation using the $N compiler directive or the 80x87
Code check box in the Options I Compiler dialog box. The default
state is {$N-}, and in this state, the compiler uses the 6-byte
floating-point library, allowing you to operate only on variables of
type Real. In the {$N+} state, the compiler generates code for the
80x87, giving you increased precision and access to the four
additional real types.

When you're compiling in 80x87 Code mode, {$N+},the return
values of the floating-point routines in the System unit (Sqrt, Pi,
Sin, and so on) are of type Extended instead of Real:

{$N+}
begin

Writeln(Pi) i

end.

{$N-}
begin

Writeln(Pi)

end.

{ 3.14159265358979E+OOOO }

{ 3.1415926536E+OO }

Even if you don't have an 80x87 in your machine, you can instruct
TurboPascal to include a run-time library that emulates the
numeric coprocessor. Then, if an 80x87 is present, it's used. If it's
not present, the run-time library emulates it, although your
program runs a bit slower than if an 80x87 were present.

The $E compiler directive and the Emulation check box in the
Options I Compiler dialog box are used to enable and disable
80x87 emulation. The default state is {$E+}, and in this state, the
full80x87 emulator is automatically included in programs that
use the 80x87. In the {$E-} state, a substantially smaller floating­
point library is used, and the final.EXE file can run only on
machines with an 80x87.

The $E compiler directive has no effect if used in a unit; it only
applies to the compilation of a program. Also, if the program is
compiled in the {$N-} state, and if all the units used by the
program were compiled with {$N-}, then an 80x87 run-time
library isn't required, and the $E compiler directive is ignored.

Language Guide

The remainder of this chapter discusses special issues concerning
Turbo Pascal programs that use the 80x87 coprocessor.

The 80x87 data types

Chapter 74, Using the 80x87

For programs that use the 80x87, Turbo Pascal provides four
floating-point types in addition to the type Real.

• The Single type is the smallest format you can use with
floating-point numbers. It occupies 4 bytes of memory,
providing a range of 1.5 x 10-45 to 3.4 X 1038 with 7 to 8
significant digits.

• The Double type occupies 8 bytes of memory, providing a range
of 5.0 x 10-324 to 1.7 X 10308 with 15 to 16 significant digits.

• The Extended type is the largest floating-point type supported
by the 80x87.1t occupies 10 bytes of memory, providing a range
of 3.4 x 10-4932 to 1.1 X 104932 with 19 to 20 significant digits. Any
arithmetic involving real-type values is performed with the
range and precision of the Extended type.

• The Comp type stores integral values in 8 bytes, providing a .
range of _263+ 1 to 263-1, which is approximately -9.2 x 1018 to
9.2 X 1018. Camp can be compared to a double-precision Longint,
but it's considered a real type because all arithmetic done with
Comp uses the 80x87 coprocessor. Comp is appropriate for
representing monetary values as integral values of cents or mils
(thousandths) in business applications.

Whether or not you have an 80x87 processor, the 6-byte Real type
is always available, so you don't have to modify your source code
when switching to the 80x87, and you can still read data files
generated by programs that use software floating point.

Note, however, that 80x87 floating-point calculations on variables
of type Real are slightly slower than on other types. This is
because the 80x87 can't directly process the Real format-instead,
calls must be made to library routines to convert Real values to
Extended before operating on them. If you're concerned with
optimum speed and always run on a system with an 80x87, you
might want to use the Single, Double, Extended, and Comp types
exclusively.

151

Extended range arithmetic

152

The Extended type is the basis of all floating-point computations
with the 80x87. Turbo Pascal uses the Extended format to store all
non-integer numeric constants and evaluates all non-integer
numeric expressions using extended precision. The entire right
side of the following assignment, for example, is computed in
Extended before being converted to the type on the left side:

{$N+}
var

X IA IB IC: Real;
begin

X := (B + Sqrt(B * B - A * Cll / A;
end;

Turbo Pascal automatically performs computations using the
precision and range of the Extended type. The added precision
means smaller round-off errors, and the additional range means
overflow and underflow are less common.

You can go beyond Turbo Pascal's automatic Extended capabilities.
For example, you can declare variables used for intermediate
results to be of type Extended. The following example computes a
sum of products:

var
Sum: Single;
X, Y: array[1 .. 100] of Single;
I: Integer;
T: Extended;

begin
T := 0.0;
for I := 1 to 100 do

begin
XlI] := I;
Y[I [:= I;
T := T + XlI] * Y[I];

end;
Sum := T;

end;

{ For intermediate results }

Had T been declared Single, the assignment to T would have
caused a round-off error at the limit of single precision at each
loop entry. But because T is Extended, all round-off errors are at
the limit of extended precision, except for the one resulting from

Language Guide

the assignment of T to Sum. Fewer round-off errors mean more
accurate results.

You can also declare formal value parameters and function results
to be of type Extended. This avoids unnecessary conversions
between numeric types, which can result in loss of accuracy. For
example,

function Area {Radius: Extended): Extended;
begin

Area := pi * Radius * Radius;
end;

Comparing reals

Because real-type values are approximations, the results of
comparing values of different real types aren't always as
expected. For example, if X is a variable of type Single and Y is a
variable of type Double, then the following statements are False:

x := 1 / 3;
Y := 1 / 3;
Writeln(X = Y);

This is because X is accurate only to 7 to 8 digits, where Y is
accurate to 15 to 16 digits, and when both are converted to
Extended, they differ after 7 to 8 digits. Similarly, the statements

x := 1 / 3;
Writeln{X = 1 / 3);

are False, because the result of 1/3 in the Writeln statement is
calculated with 20 significant digits.

The 80x87 evaluation stack

Chapter 74, Using the BOxB7

The 80x87 coprocessor has an internal evaluation stack that can be
as deep as eight levels. Accessing a value on the 80x87 stack is
much faster than accessing a variable in memory. To achieve the
best possible performance, Turbo Pascal uses the 80x87's stack for
storing temporary results.

In theory, very complicated real-type expressions can overflow
the 80x87 stack. This isn't likely to occur, however, because the

153

154

expression would need to generate more than eight temporary
results.

A more tangible danger lies in recursive function calls. If such
constructs aren't coded correctly, they can easily overlow the
SOxS7 stack.

Consider the following procedure that calculates Fibonacci
numbers using recursion:

function Fib(N: Integer): Extended;
begin

if N = a then
Fib := 0.0

else
if N = 1 then

Fib : = 1. a
else

Fib := Fib(N - 1) + Fib(N - 2);
end;

A call to this version of Fib will cause an SOxS7 stack overflow for
values of N larger than S. This is because the calculation of the last
assignment requires a temporary on the SOxS7 stack to store the
result of Fib(N-1). Each recursive invocation allocates one such
temporary, causing an overflow the ninth time. The correct
construct in this case is this:

function Fib(N: Integer): Extended;
var

F1, F2: Extended;
begin

if N = a then
Fib := 0.0

else

end;

if N = 1 then
Fib := 1.0

else
begin

F1 := Fib(N - 1);
F2 := Fib(N - 2);
Fib := F1 + F2;

end;

The temporary results are now stored in variables allocated on the
SOS6 stack. (The SOS6 stack can also overflow I but this would
usually require many more recursive calls.)

Language Guide

Writing reals with the 80x87

In the {$N+} state, the Write and Writeln standard procedures
output four digits, not two, for the exponent in a floating-point
decimal string to provide for the extended numeric range. The Str
standard procedure also returns a four-digit exponent when
floating-point format is selected.

Units using the 80x87

Detecting the
80x87

Chapter 74, Using the BOxB7

Units that use the 80x87 can be used only by other units or
programs that are compiled in the {$N+} state.

The fact that a unit uses the 80x87 is determined by whether it
contains 80x87 instructions-not by the state of the $N compiler
directive at the time of its compilation. This makes the compiler
more forgiving in cases where you accidentally compile a unit
that doesn't use the 80x87 in the {$N+} state.

When you compile in numeric processing mode ({$N+}), the
return values of the floating-point routines in the System unit­
Sqrt, Pi, Sin, and so on-are of type Extended instead of Real.

The Turbo Pascal 80x87 run-time library built into your program
(compiled with {$N+}) includes startup code that automatically
detects the presence of an 80x87 chip. If an 80x87 is available, then
the program will use it. If one isn't present, the program will use
the emulation run-time library. If the program was compiled in
the {$E-} state, and an 80x87 could not be detected at startup, the
program displays "Numeric coprocessor required," and ends.

You might want to override this default auto detection behavior
occasionally. For example, your own system might have an 80x87,
but you want to verify that your program will work as intended
on systems without a coprocessor. Or your program might need
to run on a PC-compatible system, but that particular system
returns incorrect information to the auto detection logic (saying
that an 80x87 is present when it's not, or vice versa).

Turbo Pascal provides an option for overriding the startup code's
default autodetection logic: the 87 environment variable.

155

156

Table 14.1
Test8087 variable values

You set the 87 environment variable at the DOS prompt with the
SET command, like this:

SET 87 = y

or

SET 87 = N

Setting the 87 environment variable to N (for no) tells the startup
code that you don't want to use the 80x87, even though it might
be present in the system. Conversely, setting the 87 environment
variable to Y (for yes) means that the coprocessor is there, and
you want the program to use it. .

If you set S7 = Y when there is no 80x87 available, your program
will either crash or hang!

If the S7 environment variable has been defined (to any value) but
you want to undefine it, enter this at the DOS prompt:

SET 87 =

If an 87 = Y entry is present in the DOS environment, or if the
autodetection logic succeeds in detecting a coprocessor, the
startup code executes additional checks to determine what kind of
coprocessor it's (8087, 80287, or 80387). This is required so that
Turbo Pascal can correctly handle certain incompatibilities that
exist between the different coprocessors.

The result of the auto detection and the coprocessor classification
is stored in the TestSDS7 variable (which is declared by the System
unit). The following values are defined:

Value

o
1
2
3

Definition

No coprocessor detected
8087 detected
80287 detected
80387 or 80486 detected

Your program can examine the Test8DS7 variable to determine the
characteristics of the system it's running on. In particular, TestSDS7
can be examined to determine if floating-point instructions are
being emulated or truly executed.

Language Guide

Emulation in
assembly

language

Chapter 74, Using the 80x87 .

When linking in object files using {$L filename} directives, make
sure that these object files were compiled with the 80x87
emulation enabled. For example, if you're using 80x87
instructions in assembly language external procedures, enable
emulation when you assemble the .ASM files into .OBJ files.
Otherwise, the 80x87 instructions can't be emulated on machines
without an 80x87. Use Turbo Assembler's IE command-line switch
to enable emulation.

157

158 Language Guide

c H

Read more about the
differences between

standard Pascal-style and
nUll-terminated strings on

page 767.

To read about the Strings
unit, see Chapter 76, "Using

nUll-terminated strings. N

A p T E R

15

Interfacing with DOS

The Dos and WinDos units implement a number of operating
system and file-handling routines. None of the routines in the Dos
and WinDos units are defined by Standard Pascal, so they have
been placed in their own modules.

For a complete description of DOS operations, refer to a DOS
programmer's reference manual.

The primary difference between the Dos and WinDos units is that
the procedures and functions of the Dos unit use standard Pascal­
style strings and the WinDos procedures and functions use null­
terminated strings. A standard Pascal-style string is a length byte
followed by a sequence of characters. A null-terminated string is a
sequence of non-null characters followed by a NULL (#0)
character.

Most of the time, you'll probably want to use the Dos unit for the
programs you write, as most Pascal programs traditionally use
the Pascal-style strings. If you also develop applications for the
Windows environment, however, you'll be able to write code you
can more easily share between the DOS and Windows platforms
if you use the WinDos unit along with the Strings unit; Windows
requires the use of null-terminated strings.

You also might want to use the WinDos and Strings units if you
have a C data file you want to use or convert. The C language
uses null-terminated strings.

Chapter 75, Interfacing with DOS 159

This chapter discusses the Dos unit first. To read about the
WinDos unit, turn to page 163.

Dos unit procedures and functions

160

Table 15.1
Dos unit date and time

procedures

Table 15.2
Dos unit interrupt support

procedures

These are the procedures and functions in the Dos unit. To use
them, you must refer to the Dos unit with the uses statement in
your program.

Procedure

GetDate

GetFTime

GetTime

PackTime

SetDate

SetFTime

SetTime

UnpackTime

Procedure

GetIntVec

Jntr

MsDos

SetIntVec

Description

Returns the current date set in the operating
system.

Returns the date and time a file was last
modified.

Returns the current time set in the operating
system.

Converts a DateTime record into a 4-byte, packed
date-and-time Longint used by SetFTime.

Sets the current date in the operating system.

Sets the date and time a file was last modified.

Sets the current time in the operating system.

Converts a 4-byte, packed date-and-time Longint
returned by GetFTime, FindFirst, or FindNext into
an unpacked DateTime record.

Description

Returns the address stored in a specified
interrupt vector.

Executes a specified software interrupt with a
specified Registers package.

Executes a DOS function call with a specified
Registers package.

Sets a specified interrupt vector to a specified
address.

Language Guide

Table 15.3
Dos unit disk status functions

Table 15.4
Dos unit file-handling

procedures and functions

Table 15.5
Dos unit environment­

handling functions

Table 15.6
Dos unit process-handling

procedures

Function

DiskFree

Disksize

Procedure
or function

FExpand

Fsearch

Fsplit

FindFirst

FindNext

GetFAttr

setFAttr

Function

EnvCount

Envstr

GetEnv

Procedure

Exec

Keep

Swap Vectors

Chapter 75, Interfacing with DOS

Description

Returns the number of free bytes of a specified
disk drive.

Returns the total size in bytes of a specified disk
drive.

Description

Takes a file name and returns a fully qualified file
name (drive, directory, name, and extension).

Searches for a file in a list of directories.

Splits a file name into its three component parts
(drive and directory, file name, and extension).

Searches the specified directory for the first entry
matching the specified file name and set of
attributes.

Returns the next entry that matches the name
and attributes specified in a previous call to
FindFirst.

Returns the attributes of a file.

Sets the attributes of a file.

Description

Returns the number of strings contained in the
DOS environment.

Returns a specified environment string.

Returns the value of a specified environment
variable.

Description

Executes a specified program with a specified
command line.

Keep (or Terminate Stay Resident) terminates the
program and makes it stay in memory.

Swaps all saved interrupt vectors with the
current vectors.

161

Table 15.7
Dos unit miscellaneous

procedures and functions

Procedure
or function

Dos Version

GetCBreak

Get Verify

setCBreak

Set Verify

Description

Returns the DOS version number.

Returns the state of etr/tBreak checking in DOS.

Returns the state of the verify flag in DOS.

Sets the state of etr/-Break checking in DOS.

Sets the state of the verify flag in DOS.

Dos unit constants, types, and variables

162

Constants

Table 15.8
Dos unit constants

Each of the constants, types, and variables defined by the Dos unit
are briefly discussed in this section. For more information, look
them up in Chapter I, "Library reference," in the Programmer's
Reference.

The Dos unit defines several constants. These constants can be
grouped by their function. To learn more about these constants,
look them up as part of the group they belong to. For example, to
find the value of FParity, look up "Flag constants" in the
Programmer's Reference.

Constant group

Flag

fmXXXX

File attribute

Description

Used to test individual flag bits in the Flags
register after a call to Intr or MsDos: FCarry,
FParity, FAuxiliary, FZero, Fsign, FOverfLow

Defines the allowable values for Mode field of a
TextRec text file record:fmClosed,fmlnput,
fmOutput, fmlnOut

Used to construct file attributes for use with
FindFirst, GetFAttr, and setFAttr: ReadOnly,
Hidden, sysFile, VolumeID, Directory, Archive,
AnyFile

Language Guide

Types

Table 15.9
Dos unit types

The Dos unit defines these types:

Types

File record types

Registers

DateTime

SearchRec

File-handling
string types

Description

FileRec defines the internal data format for both
typed and untyped files; TextRec is the internal
format of a variable of type Text.

Variables of this type are used by Intr and MsDos
to specify the input register contents and
examine the output register contents of a
software interrupt.

Variables of this type are used to examine and
construct 4-byte, packed date-and-time values for
GetFTime, SetFTime, FindFirst, and FindNext.

Variables of this type are used by FindFirst and
FindNext to scan directories.

String types used by various procedures and
functions in the Dos unit: ComStr, PathStr, DirStr,
NameStr, ExtStr.

Variables DosError is used by many of the routines in the Dos unit to report
errors.

WinDos unit procedures and functions

Table 15.10
WinDos date and time

procedures

These are the procedures and functions in the WinDos unit. To use
them, you must refer to the WinDos unit with the uses statement
in your program:

Procedure

GetDate

GetFTime

Get Time

PackTime

SetDate

SetFTime

Description

Returns the current date set in the operating system.

Returns the date and time a file was last modified.

Returns the current time set in the operating system.

Converts a TDateTime record into a 4-byte, packed
date-and-time Longint used by SetFTime.

Sets the current date in the operating system.

Sets the date and time a file was last modified.

Chapter 75, Interfacing with DOS 163

Table 15.11
WinDos unit interrupt support

procedures

Don't use these functions
when running Windows in

protected mode.

Table 15.12
WinDos unit disk status

functions

Table 15.13
File-handling procedures and

functions

164

Table 15.10: WinDos date and time procedures (continued)

SetTime

UnpackTime

Procedure

GetIntVec

Intr

MsDos

SetIntVec

Function

DiskFree

DiskSize

Procedure
or function

FileExpand

FileSearch

FileSplit

FindFirst

FindNext

GetFAttr

SetFAttr

Sets the current time in the operating system.

Converts a 4-byte, packed date-and-time Longint
returned by GetFTime, FindFirst, or FindNext into an
unpacked TDateTime record.

Description

Returns the address stored in a specified
interrupt vector.

Executes a specified software interrupt with a
specified TRegisters package.

Executes a DOS function call with a specified
TRegisters package.

Sets a specified interrupt vector to a specified
address.

Description

Returns the number of free bytes of a specified
disk drive.

Returns the total size in bytes of a specified disk
drive.

Description

Takes a file name and returns a fully qualified file
name (drive, directory, name, and extension).

Searches for a file in a list of directories.

Splits a file name into its three component parts
(directory, file name, and extension).

Searches the specified directory for the first entry
matching the specified file name and set of
attributes.

Returns the next entry that matches the name
and attributes specified in a previous call to
FindFirst.

Returns the attributes of a file.

Sets the attributes of a file.

Language Guide

Table 15.14
WinDos unit directory­

handling procedures and
functions

Table 15.15
WinDos unit environment­

handling functions

Table 15.16
WinDos unit miscellaneous
procedures and functions

Procedure
or function

CreateDir

GetCurDir

RemoveDir

SetCurDir

Function

GetArgCount

GetArgStr

GetEnvVar

Procedure
or function

DosVersion

GetCBreak

Get Verify

SetCBreak

Set Verify

Description

Creates a new subdirectory.

Returns the current directory of a specified drive.

Removes a subdirectory.

Changes the current directory.

Description

Returns the number of parameters passed to the
program on the command line.

Returns a specified command-line argument.

Returns a pointer to the value of a specified
environment variable.

Description

Returns the DOS version number.

Returns the state of Ctrl+Break checking in DOS.

Returns the state of the verify flag in DOS.

Sets the state of Ctri+Break checking in DOS.

Sets the state of the verify flag in DOS.

WinDos unit constants/ types/ and variables

Constants

Each of the constants, types, and variables defined by the WinDos
unit are briefly discussed in this section.

The WinDos unit uses several constants. These constants can be
grouped by their function. To learn more about these constants,
look them up as part of the constant group they belong to. For
example, to find the value of fParity, look up "Flag constants" in
the Programmer's Reference.

Chapter 15, Interfacing with DOS 165

166

Table 15.17
WinDos constants

Types

Table 15.18
WinDos unit types

Variables

Constant group

Flag

fmXXXX

faXXXX

fsXXXX

fcXXXX

Description

Test individual flag bits in the Flags register after
a call to Intr or MsDos: fCarry, jParity, fAuxiliary,
fZero, fSign, fOverflow

. Used by file-handling procedures when opening
and closing disk files:fmClosed,fmlnput,
fmOutput, fmlnOut

Test, set, and clear file attribute bits in connection
with the file-handling procedures: faReadOnly,
faHidden, faSysFile, fa VolurneID, faDirectory,
faArchive, faAnyFile

Maximum file-name component string lengths
used by FileSearch and FileExpand: fsPathName,
fsDirectory, fsF ileN arne, fsExtension

Return flags used by the FileSplit function:
fcExtension, fcF ileN arne, fcDirectory, fc Wildcards

The WinDos unit defines these types:

Types Description

File record types TFileRec is used for both typed and untyped files;
TTextRec is the internal format of a variable of type
text.

TRegisters

TDateTime

TSearchRec

Variables of this type are used by Intr and MsDos to
specify the input register contents and examine the
output register contents of a software interrupt.

Variables of this type are used to examine and
construct 4-byte, packed date-and-time values for
GetFTime, SetFTime, FindFirst, and FindNext.

Variables of this type are used by FindFirst and
FindNext to scan directories.

Dos Error is used by many of the routines in the WinDos unit to
report errors.

Language Guide

c H A p T E R

16

Using nUll-terminated strings

Turbo Pascal supports a class of character strings called null­
terminated strings. With Turbo Pascal's extended syntax and the
Strings unit, your programs can use null-terminated strings by
simply referring to the Strings unit with the uses statement in
your program.

What is a nUll-terminated string?

The compiler stores a traditional Turbo Pascal string type as a
length byte followed by a sequence of characters. The maximum
length of a Pascal string is 255 characters, and a Pascal string
occupies from 1 to 256 bytes of memory.

A null-terminated string has no length byte; instead, it consists of
a sequence of non-null characters followed by a NULL (#0)
character. There is no inherent restriction on the length of a null­
terminated string, but the 16-bit architecture of DOS does impose
an upper limit of 65,535 characters.

Strings unit functions

Turbo Pascal has no built-in routines specifically for null­
terminated string handling. Instead you'll find all such functions
in the Strings unit. Among them are StrPCopy, which you can use

Chapter 76, Using nul/-terminated strings 167

168

Table 16.1
Strings unit functions

to copy a Pascal string to a null-terminated string, and StrPas,
which you can use to convert a null-terminated string to a Pascal
string. Here's a brief description of each function:

Function

StrCat

StrComp

StrCopy

StrECopy

StrIComp

StrLCat

StrLComp

StrLCopy

StrEnd

StrDispose

StrLen

StrLIComp

StrLower

StrMove

StrNew

StrPas

StrPCopy

StrPos

Description

Appends a source string to the end of a, destination
string and returns a pointer to the destination string.

Compares two strings, Sl and S2, and returns a value
less than zero if Sl < S2, zero if Sl = S2, or greater than
zero if Sl > S2.

Copies a source string to a destination string and
returns a pointer to the destination string.

Copies a source string to a destination string and
returns a pointer to the end of the destination string.

Compares two strings without case sensitivity.

Appends a source string to the end of a destination
string, ensuring that the length of the resulting string
doesn't exceed a given maximum, and returns a pointer
to the destination string.

Compares two strings for a given maximum length.

Copies up to a given number of characters from a
source string to a destination string and returns a
pointer to the destination string.

Returns a pointer to the end of a string (that is, a
pointer to the null character that terminates a string).

Disposes of a previously allocated string.

Returns the length of a string.

Compares two strings for a given maximum length
without case sensitivity.

Converts a string to lowercase and returns a pointer to
the string.

Moves a block of characters from a source string to a
destination string, and returns a pointer to the
destination string. The two blocks may overlap.

Allocates a string on the heap.

Converts a null-terminated string to a Pascal string.

Copies a Pascal string to a null-terminated string and
returns a pointer to the null-terminated string.

Returns a pointer to the first occurrence of a given
substring within a string, or nil if the substring doesn't
occur within th~ string.

Language Guide

Table 16.1: Strings unit functions (continued)

StrRScan Returns a pointer to the last occurrence of a given
character within a string, or nil if the character doesn't
occur within the string.

StrScan

StrUpper

Returns a pointer to the first occurrence of a given
character within a string, or nil if the character doesn't
occur within the string.

Converts a string to uppercase and returns a pointer to
the string.

Using null-terminated strings

Character
pointers and
string literals

Null-terminated strings are stored as arrays of characters with a
zero-based integer index type; that is, an array of the form

array[O .. X] of Char

where X is a positive nonzero integer. These arrays are called
zero-based character arrays. Here are some examples of declarations
of zero-based character arrays that can be used to store null­
terminated strings:

type
Tldentifier = array[O .. 15] of Chari
TFileName = array[O .. 79] of Chari
TMernoText = array[O .. 1023] of Chari

The biggest difference between using Pascal strings and null­
terminated strings is the extensive use of pointers in the
manipulation of null-terminated strings. Turbo Pascal performs
operations on these pointers with a set of extended syntax rules.

When extended syntax is enabled, a string literal is assignment
compatible with the PChar type. This means that a string literal can
be assigned to a variable of type PChar. For example,

var
P: PChari

begin
P .- 'Hello world ... 'i

endi

Chapter 16, Using nUll-terminated strings 169

170

The effect of such an assignment is that the pointer points to an
area of memory that contains a null-terminated copy of the string
literal. This example accomplishes the same thing as the previous
example:

const
TempString: array[O .. 14] of Char = 'Hello world ... '#O;

var
P: PChar;

begin
P := @TempString;

end;

You can use string literals as actual parameters in procedure and
function calls when the corresponding formal parameter is of type
PChar. For example, given a procedure with the declaration

procedure PrintStr(Str: PChar);

the following procedure calls are valid:

PrintStr('This is a test');
PrintStr(#10#13);

Just as it does with an assignment, the compiler generates a null­
terminated copy of the string literal. The compiler passes a
pointer to that memory area in the Str parameter of the PrintStr
procedure.

Finally, you can initialize a typed constant of type PChar with a
string constant. You can do this with structured types as well,
such as arrays of PChar and records and objects with PChar fields.

const
Message: PChar = 'Program terminated';
Prompt: PChar = 'Enter values: 'i

Digits: array[O .. 9] of PChar = (
'Zero', 'One', 'Two', 'Three', 'Four',
'Five', 'Six', 'Seven', 'Eight', 'Nine');

A string constant expression is always evaluated as a Pascal-style
string even if it initializes a typed constant of type PChar;
therefore, a string constant expression is always limited to 255
characters in length.

Language Guide

Character
pointers and

character arrays

Character pointer
indexing

When you enable the extended syntax with $X, a zero-based
character array is compatible with the PChar type. This means that
whenever a PChar is expected, you can use a zero-based character
array instead. When you use a character array in place of a PChar
value, the compiler converts the character array to a pointer
constant whose value corresponds to the address of the first
element of the array. For example,

var
A: array[O .. 63) of Char;
P: PChar;

begin
P := A;
PrintStr(A};
PrintStr(P} ;

end;

Because of this assignment statement, P now points to the first
element of A, so PrintStr is called twice with the same value.

You can initialize a typed constant of a zero-based character array
type with a string literal that is shorter than the declared length of
the array. The remaining characters are set to NULL (#0) and the
array effectively contains a null-terminated string.

type
TFileName = array[O .. 79) of Char;

const
FileNameBuf: TFileNarne = 'TEST.PAS';
FileNarnePtr: PChar = FileNarneBuf;

Just as a zero-based character array is compatible with a character
pointer, so can a character pointer be indexed as if it were a zero­
based character array.

var
A: array[O .. 63) of Char;
P: PChar;
Ch: Char;

Chapter 76, Using nUll-terminated strings 171

172

begin
P := A;
Ch := A[5];
Ch := P[5];

end;

Both of the last two statements assign Ch the value contained in
the sixth character element of A.

When you index a character pointer, the index specifies an .
unsigned offset to add to the pointer before it's dereferenced.
Therefore, PfO] is equivalent to pA and specifies the character
pointed to by P. P[ll specifies the character right after the one
pointed to by P, P[2] specifies the next character, and so on. For
indexing, a PChar behaves as if it were declared as this:

type
TCharArray = array[0 .. 65535] of Char;
PChar = ATCharArray;

The compiler performs no range checks when indexing a char­
acter pointer because it has no type information available to
determine the maximum length of the null-terminated string
pointed to by the character pointer. Your program must perform
any such range checking.

The StrUpper function shown here illustrates the use of character
pointer indexing to convert a null-terminated string to uppercase.

function StrUpper(Str: PChar): PChar;
var

I: Word;
begin

I : = 0;
while Str[I] <> #0 do
begin

Str [I] : = UpCase (Str[I]) ;
Inc (I);

end;
StrUpper := Str;

end;

Notice that StrUpper is a function, not a procedure, and that it
always returns the value that it was passed as a parameter.
Because the extended syntax allows the result of a function call to
be ignored, StrUpper can be treated as if it were a procedure:

StrUpper (A) ;
PrintStr (A) ;

Language Guide

However, as StrUpper always returns the value it was passed, the
preceding statements can be combined into one:

PrintStr(StrUpper(A));

Nesting calls to null-terminated string-handling functions can be
very convenient when you want to indicate a certain interrelation­
ship between a set of sequential string manipulations.

~ For information about PChar operations, see page 71.

Null-terminated
strings and

standard
procedures

An example using
string-handling

functions

Turbo Pascal's extended syntax allows the Read, Readln, Str, and
Val standard procedures to be applied to zero-based character
arrays, and allows the Write, Writeln, Val, Assign, and Rename
standard procedures to be applied to both zero-based character
arrays and character pointers. For more details, see the descrip­
tions of these standard procedures in the Programmer's Reference.

Here's a code example that shows how we used some of the
string-handling functions when we wrote the FileSplit function in
the WinDos unit:

{ Maximum file name component string lengths

const
fSPathName = 79;
fsDirectory = 67;
fsFileName = 8;
fsExtension = 4;

FileSplit return flags

const
fcExtension = $0001;
fcFileName = $0002;
fcDirectory = $0004;
fcWildcards = $0008;

FileSplit splits the file name specified by Path into its
three components. Dir is set to the drive and directory path

{ with any leading and trailing backslashes, Name is set to the
{ file name, and Ext is set to the extension with a preceding
{ period. If a component string parameter is NIL, the
{ corresponding part of the path is not stored. If the path
{ does not contain a given component, the returned component
{ string is empty. The maximum lengths of the strings returned

Chapter 76, Using nul/-terminated strings 173

174

in Dir, Name, and Ext are defined by the fsDirectory,
fsFileName, and fsExtension constants. The returned value is
a combination of the fcDirectory, fcFileName, and fcExtension
bit masks, indicating which components were present in the
path. If the name or extension contains any wildcard
characters (* or ?), the fcWildcards flag is set in the
returned value.

function FileSplit(Path, Dir, Name, Ext: PChar): Word;
var

DirLen, NameLen, Flags: Word;
NamePtr, ExtPtr: PChar;

begin
NamePtr := StrRScan(Path, '\');
if NamePtr = nil then NamePtr := StrRScan(Path, ': ');
if NamePtr = nil then NamePtr := Path else Inc (NamePtr) ;
ExtPtr := StrScan(NamePtr, , .');
if ExtPtr = nil then ExtPtr := StrEnd(NamePtr);
DirLen := NamePtr - Path;
if DirLen > fsDirectory then DirLen := fsDirectory;
NameLen := ExtPtr - NamePtr;
if NameLen > fSFilenarne then NameLen .- fsFilename;
Flags := 0;
if (StrScan(NamePtr, '?') <> nil) or

(StrScan(NamePtr, '*') <> nil) then
Flags := fcWildcards;

if DirLen <> 0 then Flags := Flags or fcDirectory;
if NameLen <> 0 then Flags := Flags or fcFilename;
if ExtPtr[O] <> #0 then Flags := Flags or fcExtension;
if Dir <> nil then StrLCopy(Dir, Path, DirLen);
if Name <> nil then StrLCopy(Name, NamePtr, NameLen);
if Ext <> nil then StrLCopy(Ext, ExtPtr, fsExtension);
FileSplit .- Flags;

end;

Language Guide

c H A p T E R

17

Using the Borland Graphics Interface

Your license agreement
permits you to distribute the

.CHR and .BGI files along with
your programs.

Drivers

The Graph unit features a complete library of more than 50
graphics routines that range from high-level calls such as
Set ViewPort, Circle, Bar3D, and DrawPoly, to bit-oriented routines
such as GetImage and PutImage. It supports several fill and line
styles and there are several fonts that may be magnified, justified,
and oriented horizontally or vertically.

To compile a program that uses the Graph unit, you'll need your
program's source code, the compiler~ and access to the standard
units in the run-time library (TURBO.TPL) and the Graph unit
(GRAPH.TPU):

To run a program that uses the Graph unit, you'll need one or
more of the graphics drivers (.BGI files listed in the next section)
in addition to your .EXE program. Also, if your program uses any
stroked fonts, you'll need one or more font (.CHR) files as well.

Graphics drivers are provided for the following graphics adapters
(and true compatibles):

.CGA
• MCGA
• EGA
.VGA

• Hercules
• AT&T 400 line
.3270 PC
• IBM 8514

Chapter 77, Using the Borland Graphics Interface 175

Table 17.1
BGI drivers

IBM 8514 support

176

Each driver contains code and data and is stored in a separate file
on disk. At run time, the InitGraph procedure identifies the
graphics hardware, loads and initializes the appropriate graphics
driver, puts the system into graphics mode, and then returns
control to the calling routine. The CloseGraph procedure unloads
the driver from memory and restores the previous video mode.
You can switch back and forth between text and graphics modes
using the RestoreCrtMode and SetGraphMode routines. To load the
driver files yourself or link them into your .EXE file, refer to
RegisterBGldriver in Chapter I, "Library reference," in the
Programmer's Reference.

Graph supports computers with dual monitors. When Graph is
initialized by calling InitGraph, the correct monitor will be selected
for the graphics driver and mode requested. When terminating a
graphics program, the previous video mode will be restored. If
auto detection of graphics hardware is requested on a dual moni­
tor system, InitGraph will select the monitor and graphics card
that will produce the highest quality graphics output.

Driver

ATT.BGI
CGA.BGI
EGAVGA.BGI
HERC.BGI
IBM8514.BGI
PC3270.BGI

Equipment

AT&T 6300 (400 line)
IBM CGA, MeGA
IBM EGA, VGA
Hercules monochrome
IBM 8514
IBM 3270 PC

Turbo Pascal supports the IBM 8514 graphics card, a high­
resolution graphics card capable of resolutions up to 1024 x 768
pixels and a color palette of 256 colors from a list of 256K colors ..
The driver file name is IBM8514.BGI.

Turbo Pascal can't properly autodetect the IBM 8514 graphics
card (the autodetection logic recognizes it as VGA). Therefore, to
use the IBM 8514 card, the GraphDriver variable must be assigned
the value IBM8514 (which is defined in the Graph unit) when
InitGraph is called. You should not use DetectGraph (or Detect with
InitGraph) with the IBM 8514 unless you want the emulated VGA
mode.

The supported modes of the IBM 8514 card are IBM8514LO
(640 x 480 pixels), and IBM8514HI (1024 x 768 pixels). Both mode

Language Guide

Coordinate
system

Figure 17.1
Screen with xv-coordinates

constants are defined in the interface for GRAPH. TPU or
GRAPH.TPP.

The IBM 8514 uses three 6-bit values to define colors. There is a
6-bit Red, Green, and Blue component for each defined color. The
SetRGBPalette procedure allows you to define colors for the IBM
8514; it's defined in the Graph unit as:

procedure SetRGBPalette(ColorNum, Red, Green, Blue: Word);

The argument ColorNum defines the palette entry to be loaded.
ColorNum is an integer from 0 to 255 (decimal). The arguments
Red, Green, and Blue define the component colors of the palette
entry. Only the lower byte of these values is used, and out of this
byte, only the 6 most-significant bits are loaded in the palette.

The other palette manipulation routines of the graphics library
can't be used with the IBM 8514 driver (that is, SetAllPalette,
SetPalette, and GetPalette).

For compatibility with the balance of the IBM graphics adapters,
the BGI driver defines the first 16 palette entries of the IBM 8514
to the default colors of the EGAjVGA. These values can be used
as is, or changed using the SetRGBPalette routine.

By convention, the upper left corner of the graphics screen is (0,0).
The x values, or columns, increment to the right. The y values, or
rows, increment downward. In 320x200 mode on a eGA, the
screen coordinates for each of the four corners with a specified
point in the middle of the screen would look like this:

(0,0) (319,0)
~----------------~

.(159,99)

(0,199) (319,199)

Chapter 77, Using the Borland Graphics Interface 177

Current pointer

Text

178

Many graphics systems support the notion of a current pointer
(CP). The CP is similar in concept to a text mode cursor except
that the CP isn't visible.

In text mode, this Write statement

wri te (, ABC') ;

leaves the cursor in the column immediately following the letter
C. If the C is written in column 80, then the cursor wraps around
to column 1 of the next line. If the C is written in column 80 on the
25th line, the entire screen scrolls up one line, and the cursor is in
column 1 of line 25.

MoveTo(O,O)
LineTo(20,20)

In graphics mode, the preceding LineTo statement leaves the CP at
the last point referenced (20,20). The actual line output is clipped
to the current viewport if clipping is active. Note that the CP is
never clipped.

The MoveTo command is the equivalent of GoToXY. Its only
purpose is to move the CPo Only the commands that use the CP
move the CP: InitGraph, MoveTo, MoveRel, LineTo, LineRel, OutText,
SetGraphMode, GraphDefaults, ClearDevice, Set ViewPort, and
Clear ViewPort. The latter five commands move the CP to (0,0).

An 8x8 bitmapped font and several stroked fonts are included for
text output while in graphics mode. A bitmapped character is
defined by an 8x8 matrix of pixels. A stroked font is defined by a
series of vectors that tell the graphics system how to draw the
font.

The advantage of using a stroked font is apparent when you start
to draw large characters. Because a stroked font is defined by
vectors, it retains good resolution and quality when the font is
enlarged.

When a bitmapped font is enlarged, the matrix is multiplied
by a scaling factor and, as the scaling factor becomes larger, the

Language Guide

characters' resolution becomes coarser. For small characters, the
bitmapped font is usually sufficient, but for larger text you will
want to select a stroked font.

The justification of graphics text is controlled by the setTextJustify
procedure. Scaling and font selection is done with the setTextstyle
procedure. Graphics text is output by calling either the OutText or
OutTextXY procedures. Inquiries about the current text settings
are made by calling the GetTextsettings procedure. The size of
stroked fonts can be customized by the setUserCharsize
procedure.

Each stroked font is kept in its own file on disk with a .CHR file
extension. Font files can be loaded from disk automatically by the
Graph unit at run time (as described), or they can be linked in or
loaded by the user program and "registered" with the Graph unit.

Turbo Pascal provides a special utility, BINOBJ.EXE, that converts
a font file (or any binary data file, for that matter) to an .OBJ file
that can be linked into a unit or program using the {$L} compiler
directive. This makes it possible for a program to have all its font
files built into the .EXE file. (Read the comments at the beginning
of the BGILINK.PAS sample program.)

Figures and styles

Viewports and bit

All kinds of support routines are provided for drawing and filling
figures, including points, lines, circles, arcs, ellipses, rectangles,
polygons, bars, 3-D bars, and pie slices. Use setLinestyle to control
whether lines are thick or thin, or whether they are solid, dotted,
or built using your own pattern.

Use setFillstyle and setFillPattern, FillPoly and FloodFill to fill a
region or a polygon with cross-hatching or other intricate
patterns.

images The Set ViewPort procedure makes all output commands operate
in a rectangular region onscreen. Plots, lines, figures-all graphics
output-are viewport-relative until the viewport is changed.
Other routines are provided to clear a viewport and read the
current viewport definitions. If clipping is active, all graphics

Chapter 77, Using the Borland Graphics Interface 179

output is clipped to the current port. Note that the CP is never
clipped.

GetPixel and PutPixel are provided for reading and plotting pixels.
GetImage and PutImage can be used to save and restore rectan­
gular regions onscreen. They support the full complement of
BitBIt operations (copy, xor, or, and, not).

Paging and colors

Error handling

180

There are many other routines that support palettes, colors,
multiple graphic pages (EGA, VGA, and Hercules only), and
soon.

Internal errors in the Graph unit are returned by the function
GraphResuIt. GraphResuIt returns an error code that reports the
status of the last graphics operation. Find the error return codes
under GraphResult Errors in Chapter I, "Library reference," in
the Programmer's Reference.

The following routines set GraphResuIt:

Bar
Bar3D
ClearViewPort
CloseGraph
DetectGraph
DrawPoly
FillPoly
FloodFill
GetGraphMode

ImageSize
InitGraph
Install User Driver
InstallUserFont
PieS lice
Regis terB Gldriver
RegisterBGIfont
SetAllPalette

SetF illPattern
SetF illS tyle
SetGraphBufSize
SetGraphMode
SetLineStyle
SetPalette
SetTextJustify
SetTextStyle

GraphResuIt is reset to zero after it has been called. Therefore, the
user should store the value of GraphResuIt into a temporary
variable and then test it.

Language Guide

Getting started

Here's a simple graphics program:

program GrafTest;
uses

Graph;
const

S = 'Borland Graphics Interface (BGI) ';
var

GraphDriver: Integer;
GraphMode: Integer;
ErrorCode: Integer;
Size: Word;

begin
GraphDriver := Detect; { Set flag: do detection}
InitGraph(GraphDriver, GraphMode, 'C:\TP\BGI');
ErrorCode := GraphResult;
if ErrorCode <> GrOk then

begin
Error? }

Writeln('Graphics error: ' GraphErrorMsg(ErrorCode));
Writeln('Program aborted ... ');
Halt (1);

end;
Rectangle (0, 0, GetMaxX, GetMaxY);
SetTextJustify(CenterText, CenterText);
Size := 3;
repeat

SetTextStyle(DefaultFont, HorizDir, Size);
Dec(Size);

until (Size = 0) or (TextWidth(S) < GetMaxX);
if Size <> 0 then

OutTextXY(GetMaxX div 2, GetMaxY div 2, S);
Readln;
CloseGraph;

end. { GrafTest

Draw full sceen box }
{ Center text }

Center of screen }

The program begins with a call to In it Graph, which autodetects
the hardware and loads the appropriate graphics driver. For the
program to run correctly, the driver and fonts must be in the same
directory as the executable program, or the program must specify
an explicit directory. In this example, the directory is C:\ TP\BGI.
If the program fails to recognize graphics hardware or an error
occurs during initialization, the program displays an error
message and terminates. Otherwise, the program draws a box
along the edge of the screen and displays text in the center of the
screen.

Chapter 77, Using the Borland Graphics Interface 181

182

~ Neither the AT&T 400 line card nor the IBM 8514 graphics
adapter is autodetected. You can still use these drivers by over­
riding autodetection and passing InitGraph the driver code and a
valid graphics mode. To use the AT&T driver, for example,
replace the ninth and tenth lines in the preceding example with
the following three lines of code: -

GraphDriver := ATT400;
GraphMode := ATT400Hi;
InitGraph(GraphDriver, GraphMode, 'C:\TP\BGI');

This instructs the graphics system to load the AT&T 400 line
driver located in C: \ TP\BGI and set the graphics mode to 640 by
400.

Here's another example that demonstrates how to switch back
and forth between graphics and text modes:

program GrafTst2;
uses

Graph;
var

GraphDriver: Integer;
GraphMode: Integer;
ErrorCode: Integer;

begin
GraphDriver := Detect; { Set flag: do detection}
InitGraph(GraphDriver, GraphMode, 'C:\TP\BGI');
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Writeln('Graphics error: " GraphErrorMsg(ErrorCode));
Writeln('Program aborted ... ');
Halt (1) ;

end;
OutText('In Graphics mode. Press <RETURN>');
Readln;
RestoreCRTMode;
Write('Now in text mode. Press <RETURN>');
Readln;
SetGraphMode(GraphMode) ;
OutText('Back in Graphics mode. Press <RETURN>');
Readln;
CloseGraph;

end. { GrafTst2

{ Error? }

Language Guide

Heap
management

routines

Note that the SetGraphMode call near the end of the example resets
all the.graphics parameters (palette, current pointer, foreground,
and background colors, and so on) to the default values.

The call to Close Graph restores the video mode that was detected
initially by InitGraph and frees the heap memory that was used to
hold the graphics driver.

Two heap management routines are used by the Graph unit:
GraphGetMem and GraphFreeMem. GraphGetMem allocates
memory for graphics device drivers, stroked fonts, and a scan
buffer. GraphFreeMem de allocates the memory allocated to the
drivers. The standard routines take the following form:

procedure GraphGetMem(var P: Pointer; Size: Word);
{ Allocate memory for graphics }

procedure GraphFreeMem(var P: Pointer; Size: Word);
{ Deallocate memory for graphics }

Two pointers are defined by Graph that, by default, point to the
two standard routines described here. The pointers are defined as
follows:

var
GraphGetMemPtr: Pointer;
GraphFreeMemPtr: Pointer

{ Pointer to memory allocation routine }
Pointer to memory deal location routine }

The Graph unit calls the heap management routines referenced by
GraphGetMemPtr and GraphFreeMemPtr to allocate and deallocate
memory for three different purposes:

• A multi-purpose graphics buffer whose size can be set by a call
to SetGraphBujSize (default equals 4K)

• A device driver that is loaded by InitGraph (*.BGI files)

• A stroked font file that is loaded by SetTextStyle (*.CHR files)

The graphics buffer is always allocated on the heap. The device
driver is allocated on the heap unless your program loads or links
one in and calls RegisterBGldriver. The font file is allocated on the
heap when you select a stroked font using SetTextStyle-unless
your program loads or links one in and calls RegisterBGIfont.

When the Graph unit is initialized, these pointers point to the
standard graphics allocation and deallocation routines that are
defined in the implementation section of the Graph unit. You can

Chapter 77, Using the Borland Graphics Interface 183

184

insert your own memory-management routines by assigning
these pointers the address of your routines. The user-defined
routines must have the same parameter lists as the standard
routines and must be far procedures. The following is an example
of user-defined allocation and deallocation routines; notice the
use of MyExitProc to automatically call Close Graph when the
program terminates:

program UserHeapManagement;
{ Illustrates how the user can steal the heap
{ management routines used by the Graph unit.

uses
Graph;

var
GraphDriver, GraphMode: Integer;
ErrorCode: Integer;
PreGraphExitProc: Pointer;

{ Stores GraphResult return code
{ Saves original exit proc

procedure MyGetMem(var P: Pointer; Size: Word); far;
{ Allocate memory for graphics device drivers, fonts, and scan buffer}
begin

GetMem(P, Size)
end; { MyGetMem }

procedure MyFreeMem(var P: Pointer; Size: Word); far;
{ Deallocate memory for graphics device drivers, fonts, and scan

buffer}
begin

if P <> nil then
begin

FreeMem(P, Size);
P := nil;

end;
end; { MyFreeMem

procedure MyExitProc; far;

{ Don't free nil pointers! }

{ Always gets called when program terminates
begin

ExitProc := PreGraphExitProc;
CloseGraph;

end; { MyExitProc }

begin
PreGraphExitProc := ExitProc;
ExitProc := @MyExitProc;

GraphGetMemPtr :=.@MyGetMem;
GraphFreeMemPtr := @MyFreeMem;

Restore original exit proc
{ Do heap clean up

Install clean-up routine

{ Control memory allocation
Control memory deallocation

Language Guide

GraphDriver := Detect;
InitGraph(GraphDriver, GraphMode, ");
ErrorCode := GraphResult;
if ErrorCode <> grOk then
begin

Writeln('Graphics error: ' GraphErrorMsg(ErrorCode))i
Readlni
Halt (1);

end;
Line(O, 0, GetMaxX, GetMaxY);
OutTextXY(1, 1, 'Press <Return>:');
Readlni

end. {UserHeapManagement}

Graph procedures and functions

The Graph unit provides many procedures and functions for use
in your programs:

Table 17.2: Graph unit procedures and functions

Arc

Bar

Bar3D

Circle

ClearDevice

Clear ViewPort

CloseGraph

DetectGraph

DrawPoly

Ellipse

FillEllipse

FillPoly

FloodFill

GetArcCoords

GetAspectRatio

GetBkColor

GetColor

Draws a circular arc from start angle to end angle using (x,y) as the center point.

Draws a bar using the current fill style and color.

Draws a 3-D bar using the current fill style and color.

Draws a circle using (x,y) as the center point.

Clears the currently selected output device and homes the current pointer.

Clears the current viewport.

Shuts down the graphics system.

Checks the hardware and determines which graphics driver and mode to use.

Draws the outline of a polygon using the current line style and color.

Draws an elliptical arc from start angle to end angle, using (x,y) as the center
point.

Draws a filled ellipse using (x,y) as a center point and XRadius and YRadius as the
horizontal and vertical axes.

Fills a polygon, using the scan converter.

. Fills a bounded region using the current fill pattern and fill color.

Allows the user to inquire about the coordinates of the last Arc command.

Returns the effective resolution of the graphics screen from which the aspect
ratio (Xasp:Yasp) can be computed.

Returns the current background color.

Returns the current drawing color.

Chapter 77, USing the Borland Graphics Interface 185

Table 17.2: Graph unit procedures and functions (continued)

GetDefauItPalette Returns the default hardware palette in a record of PaletteType.

GetDriverName

GetFillPattern

GetFillSettings

GetGraphMode

GetImage

GetLineSettings

GetMaxColor

GetMaxMode

GetMaxX

GetMaxY

GetModeName

GetModeRange

GetPaletteSize

GetPixel

GetPalette

GetTextSettings

GetViewSettings

GetX

GetY

GraphDefaults

GraphErrorMsg

GraphResuIt

ImageSize

InstallUserDriver

InstallUserFont

InitGraph

Line

LineRel

LineTo

186

Returns a string containing the name of the current driver.

Returns the last fill pattern set by a call to SetFillPattern.

Allows the user to inquire about the current fill pattern and color as set by
SetFillStyle or SetFillPattern.

Returns the current graphics mode.

Saves a bit image of the specified region into a buffer.

Returns the current line style, line pattern, and line thickness as set by
SetLineStyle.

Returns the highest color that can be passed to SetColor.

Returns the maximum mode number for the currently loaded driver.

Returns the rightmost column (x resolution) of the current graphics driver and
mode.

Returns the bottommost row (y resolution) of the current graphics driver and
mode.

Returns a string containing the name of the specified graphics mode.

Returns the lowest and highest valid graphics mode for a given driver.

Returns the size of the palette color lookup table.

Gets the pixel value at (x,y).

Returns the current palette and its size.

Returns the current text font, direction, size, and justification as set by
SetTextStyle and SetTextJustify.

Allows the user to inquire about the current viewport and clipping parameters.

Returns the x-coordinate of the current position (CP).

Returns the y-coordinate of the current position (CP).

Homes the current pointer (CP) and resets the graphics system.

Returns an error message string for the specified ErrorCode.

Returns an error code for the last graphics operation.

Returns the number of bytes required to store a rectangular region of the screen.

Installs a vendor-added device driver to the BGI device driver table.

Installs a new font file that isn't built into the BGI system.

Initializes the graphics system and puts the hardware into graphics mode.

Draws a line from the (xl, yl) to (x2, y2).

Draws a line to a point that is a relative distance from the current pointer (CP).

Draws a line from the current pointer to (x,y).

Language Guide

Table 17.2: Graph unit procedures and functions (continued)

MoveRel Moves the current pointer (CP) a relative distance from its current position.

MoveTo Moves the current graphics pointer (CP) to (x,y).

OutText Sends a string to the output device at the current pointer.

Sends a string to the output device. OutTextXY

PieS lice Draws and fills a pie slice, using (x,y) as the center point and drawing from start
angle to end angle.

PutImage

PutPixei

Rectangle

RegisterBGldriver

RegisterBGIfont

RestoreCrtMode

Sector

SetActivePage

SetAllPalette

SetAspectRatio

SetBkCoior

SetColor

SetFillPattern

SetFillStyle

SetGraphBujSize

SetGraphMode

SetLineStyle

SetPalette

SetRGBPalette

SetTextJustify

SetTextStyle

SetUserCharSize

SetViewPort

SetVisualPage

SetWriteMode

TextHeight

Text Width

Puts a bit image onto the screen.

Plots a pixel at (x,y).

Draws a rectangle using the current line style and color.

Registers a valid BGI driver with the graphics system.

Registers a valid BGI font with the graphics system.

Restores the original screen mode before graphics is initialized.

Draws and fills an elliptical sector.

Sets the active page for graphics output.

Changes all palette colors as specified.

Changes the default aspect ratio.

Sets the current background color using the palette.

Sets the current drawing color using the palette.

Selects a user-defined fill pattern.

Sets the fill pattern and color.

Lets you change the size of the buffer used for scan and flood fills.

Sets the system to graphics mode and clears the screen.

Sets the current line width and style.

Changes one palette color as specified by ColorNum and Color.

Lets you modify palette entries for the IBM 8514 and the VGA drivers.

Sets text justification values used by OutText and OutTextXY.

Sets the current text font, style, and character magnification factor.

Lets you change the character width and height for stroked fonts.

Sets the current output viewport or window for graphics output.

Sets the visual graphics page number.

Sets the writing mode (copy or xor) for lines drawn by DrawPoly, Line, LineRel,
Line To, and Rectangle.

Returns the height of a string in pixels.

Returns the width of a string in pixels.

Chapter 77, Using the Borland Graphics Interface 187

For a detailed description of each procedure or function, refer to
Chapter I, "Library reference," in the Programmer's Reference.

Graph unit constants, types, and variables

Constants

Table 17.3
Graph unit constant groups

The Graph unit defines several constants, types, and variables that
your programs can use.

The Graph constants can be grouped by their function. To learn
more about these constants, see Chapter I, "Library reference," in
the Programmer's Reference. Look up the constant under the group
it belongs to. This table will help you identify the group you
want:

Constant group Description

Driver and mode Constants that specify video drivers and
modes; used with InitGraph, DetectGraph,
and GetModeRange.

grXXXX Constants that identify the type of error
returned from GraphResult.

Color Constants that specify colors; used with
setPalette and setAllPalette.

Color for setRGBPalette Constants used with setRGBPalette to select
standard EGA colors on an IBM 8514.

Line style Constants used to determine a line style
and thickness; used with GetLinesettings
and setLinestyle.

Font control Constants that identify fonts; used with
GetTextsettings and setTextstyle.

Justification Constants that control horizontal and
vertical justification; used with
setTextJustify.

Clipping Constants that control clipping; used with
Set ViewPort.

Bar Constants that control the drawing of a 3-D
top on a bar; used with Bar3D.

Fill pattern Constants that determine the pattern used
to fill an area; used with GetFillsettings and
setFillstyle.

188 Language Guide

Types

Table 17.4 J

Graph unit types

Variables

Table 17.3: Graph unit constant groups (continued)

BitBlt operators

MaxColors

Operators (copy, xor, or, and, and not) used
with PutImage and, SetWriteMode.

The constant that defines the maximum
number of colors used with GetPalette,
GetDefaultPalette, and SetAIIPalette.

For example, to find the constant you need to change the
background screen color to green, look under Color Constants in
Chapter I, "Library reference," in the Programmer's Reference.

The Graph unit defines these types:

Type

PaletteType

LineSettingsType

TextSettingsType

FillSettingsType

FillPa ttern Type

PointType

ViewPort Type

ArcCoordsType

Description

The record that defines the size.and colors
of the palette; used by GetPalette,
GetDefaultPalette, and SetAIIPalette.

The record that defines the style, pattern,
and thickness of a line; used by
GetLineSettings.

The record that defines the text; used by
GetTextSettings.

The record that defines the pattern and
color used to fill an area; used by
GetFillSettings.

The record that defines a user-defined fill
pattern; used by GetFillPattern and
SetFillPattern.

A type defined for your convenience.

A record that reports the status of the
current viewport; used by GetViewSettings.

A record that retrieves information about
the last call to Arc or Ellipse; used by
GetArcCoords.

The Graph unit has two variables you can use: GraphGetMemPtr
and GraphFreeMemPtr. They are used by heap-management
routines. Read about them in Chapter I, "Library reference," in
the Programmer's Reference.

Chapter 17, Using the Bor/and Graphics Interface 189

190 Language Guide

c H

Chapter 78, Using overlays

A p T E R

18

Using overlays

Overlays are parts of a program that share a common memory
area. Only the parts of the program that are required for a given
function reside in memory at the same time; they can overwrite
each other during execution.

Overlays can significantly reduce a program's total run-time
memory requirements. In fact, with overlays you can execute pro­
grams that are much larger than the total available memory
because only parts of the program reside in memory at any given
time.

Turbo Pascal manages overlays at the unit level; this is the
smallest part of a program that can be made into an overlay.
When an overlaid program is compiled, Turbo Pascal generates
an overlay file (extension .OVR) in addition to the executable file
(extension .EXE). The .EXE file contains the static (nonoverlaid)
parts of the program, and the .OVR file contains all the overlaid
units that will be swapped in and out of memory during program
execution.

Except for a few programming rules, an overlaid unit is identical
to a nonoverlaid unit. In fact, as long as you observe these rules,
you don't even need to recompile a unit to make it into an over­
lay. The decision of whether or not a to overlay a unit is made by
the program that uses the unit.

When an overlay is loaded into memory, it's placed in the overlay
buffer, which resides in memory between the stack segment and
the heap. By default, the size of the overlay buffer is as small as

191

possible, but it can be easily increased at run time by allocating
additional space from the heap. Like the data segment and the
minimum heap size, the default overlay buffer size is allocated
when the .EXE is loaded. If enough memory isn't -available, an
error message will be displayed by DOS ("Program too big to fit
in memory") or by the. IDE ("Not enough memory to run pro­
gram").

One very important option of the overlay manager is the ability to
load the overlay file into expanded memory when sufficient space
is available. Turbo Pascal supports version 3.2 or later of the
Lotus/Intel/Microsoft Expanded Memory Specification (EMS) for
this purpose. Once placed into EMS, the overlay file is closed, and
subsequent overlay loads are reduced to fast in-memory transfers.

The overlay manager

192

Turbo Pascal's overlay manager is implemented by the Overlay
standard unit. The buffer-management techniques used by the
Overlay unit are very advanced, and always guarantee optimal
performance in the available memory. For example, the overlay
manager always keeps as many overlays as possible in the over­
lay buffer to reduce the chance of having to read an overlay from
disk. Once an overlay is loaded, a call to one of its routines exe­
cutes just as fast as a call to a nonoverlaid routine. Also, when the
overlay manager needs to dispose of an overlay to make room for
another, it attempts to first dispose of overlays that are inactive
(ones that have no active routines at that time).

To implement its advanced overlay-management techniques,
Turbo Pascal requires that you observe two important rules when
writing overlaid programs:

• All overlaid units must include a {$O+} directive, which causes
the compiler to ensure that the generated code can be overlaid .

• Whenever a call is made to an overlaid procedure or function,
you must ensure that all currently active procedures and
functions use the far call model.

Both rules are explained further in a section entitled "Designing
overlaid programs," beginning on page 197. For now, just note
that you can easily satisfy these requirements by placing a
{$O+,F+} compiler directive at the beginning of all overlaid units,

Language Guide

Overlay buffer
management

Chapter 78, Using overlays

and a {$F+} compiler directive at the beginning of all other units
and the main program.

Failing to observe the far call requirement in an overlaid program
causes unpredictable and possibly catastrophic results when the
program is executed.

The {SO unitname} compiler directive is used in a program to
indicate which units to overlay. This directive must be placed
after the program's uses clause, and the uses clause must name
the Overlay standard unit before any of the overlaid units. Here is
an example:

program Editor;

{$F+} { Force FAR calls for all procedures & functions

uses
Overlay, Crt, Dos, EdInOut, EdFormat, EdPrint, EdFind, EdMain;

{SO EdlnOut}
{SO EdFormat}
{SO EdPrint}
{SO EdFind}
{SO EdMatn}

The compiler reports an error if you attempt to overlay a unit that
wasn't compiled in the {$O+} state. Of the standard units, the only
one that can be overlaid is Dos; the other standard units, can't be
overlaid. Also, programs containing overlaid units must be
compiled to disk; the compiler reports an error if you attempt to
compile such programs to memory.

The Turbo Pascal overlay buffer is best described as a ring buffer
that has a head pointer and a tail pointer. Overlays are always
loaded at the head of the buffer, pushing" older" ones toward the
tail. When the buffer becomes full (that is, when there isn't
enough free space between the head and the tail), overlays are
disposed of at the tail to make room for new ones.

Because ordinary memory isn't circular in nature, the actual
implementation of the overlay buffer involves a few more steps to
make the buffer appear to be a ring. Figure 18.1 illustrates the
process. The figure shows a progression of overlays being loaded
into an initially empty overlay buffer. Overlay A is loaded first,
followed by B, then C, and finally D. Shaded areas indicate free
buffer space.

193

194

Figure 18.1
Loading and disposing of

overlays

Head
Overlay A

Tail
Step 3

Hea d
......

Overlay C

Overlay B

Overlay A

Tail

Head

Tail

Tail
Hea d

Overlay B

Overlay A

Step 4

Overlay C

Overlay B

Overlay D

As you can see, a couple of interesting things happen in the
transition from step 3 to step 4. First, the head pointer wraps
around to the bottom of the overlay buffer, causing the overlay
manager to slide all loaded overlays (and the tail pointer)
upward. This sliding is required to keep the area between the
head pointer and the tail pointer free. Second, to load overlay D,
the overlay manager has to dispose of overlay A from the tail of
the buffer. Overlay A in this case is the least recently loaded over­
lay and, therefore, the best choice for disposal when something .
has to go. The overlay manager continues to dispose of overlays
at the tail to make room for new ones at the head, and each time
the head pointer wraps around, the sliding operation repeats.

Although this is the default mode of operation for Turbo Pascal's
overlay manager, you can use an optional optimization of the
overlay-management algorithm.

Imagine that overlay A contains a number of frequently used
routines. Even though these routines are used all the time, A is
still thrown out of the overlay buffer occasionally, only to be
reloaded again shortly thereafter.

The overlay manager knows nothing about the frequency of calls
to routines in A-only that a call is made to a routine in A and A
isn't in memory, so it has to load A. One solution to this problem

Language Guide

might be to trap every call to routines in A and then, at each call,
move A to the head of the overlay buffer to reflect its new status
as the most recently used overlay. Intercepting calls this way is
very costly in terms of execution speed and, in some cases, can
slow down the application even more than the additional overlay
load operations does.

Turbo Pascal offers a solution that incurs almost no performance
overhead and yet successfully identifies frequently used overlays
that shouldn't be unloaded: When an overlay gets close to the tail
of the overlay buffer, it's put on "probation."

If, during this probationary period, a call is made to a routine in
the overlay, it's "reprieved," and isn't disposed of when it reaches
the tail of the overlay buffer. Instead, it's moved to the head of the
buffer and gets another free ride around the overlay buffer ring.
On the other hand, if no calls are made to an overlay during its
probationary period, thereby indicating infrequent use, the over­
lay is disposed of when it reaches the tail of the overlay buffer.

The net effect of the probation/ reprieval scheme is that frequently
used overlays are kept in the overlay buffer at the cost of intercep­
ting just one call every time the overlay gets close to the tail of the
overlay buffer.

Two overlay-manager routines, OvrSetRetry and OvrGetRetry,
control the probation/ reprieval mechanism. OvrSetRetry sets the
size of the area in the overlay buffer to keep on probation and
OvrGetRetry returns the current setting.

If an overlay falls within the last OvrGetRetry bytes before the
overlay buffer tail, it's automatically put on probation. Any free
space in the overlay buffer is considered part of the probation
area.

Overlay procedures and functions

Chapter 78, Using overlays

The Overlay unit-defines a few procedures and functions; find
their definitions as well as more details in Chapter I, "Library
reference," in the Programmer's Reference.

195

Table 18.1
Overlay unit procedures and

functions

Procedure
or function

OvrClearBuf

OvrGetBuf

OvrGetRetry

Ovrlnit

OvrlnitEMS

OvrSetBuf

OvrSetRetry

Description

Clears the overlay buffer.

Returns the current size of the overlay buffer.

Returns the current size of the probation area, the
value last set with OvrSetRetry.

Initializes the overlay manager and opens the
overlay file.

Loads the overlay file into EMS.

Sets the size of the overlay buffer.

Sets the size of the "probation area" in the
overlay buffer.

Variables and constants

196

Table 18.2
Overlay unit variables

Result codes

The Overlay unit defines five variables:

Variable

OvrFileMode

OvrLoadCount

OvrReadBuf

OvrResult

OvrTrapCount

Description

Determines the access code to pass to DOS when
the overlay file is opened.

The variable incremented each time an overlay is
loaded.

The procedure variable that lets you intercept
overlay load operations.

The variable that holds the result code when an
Overlay procedure executes.

The variable incremented each time an overlaid
routine is intercepted by the overlay manager.

Find the values of these variables in Chapter 1, "Library
reference," in the Programmer's Reference.

Errors in the Overlay unit are reported through the OvrResult
variable. Look up "ovrXXXX constants" in Chapter 1, "Library
reference," in the Programmer's Reference to find OvrResult values.

Language Guide

Designing overlaid programs

Overlay code
generation

The for call

This section provides some important information on designing
programs with overlays. Look it over carefully, because a number
of the issues discussed are vital to well-behaved overlaid
applications.

Turbo Pascal allows a unit to be overlaid only if it was compiled
with {$O+}. In this state, the code generator takes special precau­
tions when passing string and set constant parameters from one

. overlaid procedure or function to another. For example, if UnitA
contains a procedure with the following header:

procedure WriteStr(S: string);

and if UnitB contains the statement

writeStr(IHello world ... ');

then Turbo Pascal places the string constant 'Hello world ... ' in
UnitB's code segment, and passes a pointer to it to the WriteStr
procedure. If both units are overlaid, this doesn't work because, at
the call to WriteStr, UnitB's code segment can be overwritten by
UnitA's and the string pointer becomes invalid. The {$O+} dir­
ective is used to avoid such problems; whenever Turbo Pascal
detects a call from one unit compiled with {$O+} to another unit
compiled with {$O+}, the compiler copies all code-segment-based
constants into stack temporaries before passing pointers to them.

The use of {$O+} in a unit doesn't force you to overlay that unit. It
just instructs Turbo Pascal to ensure that the unit can be overlaid,
if so desired. If you develop units that you plan to use in overlaid
as well as nonoverlaid applications, compiling them with {$O+}
ensures that you can do both with just one version of the unit.

requirement At any call to an overlaid procedure or function in another
module, you must guarantee that all currently active procedures
or functions use the far call model.

Chapter 78, Using overlays

This is best illustrated by example: Assume that Ovr A is a
procedure in an overlaid unit, and that MainB and Maine are
procedures in the main program. If the main program calls

197

Initializing the
overlay manager

198

Maine, which calls MainB, which then calls OvrA, then at the call
to OvrA, MainB and Maine are active (they have not yet returned)
and they are required to use the far call model. Being declared in
the main program, MainB and Maine would normally use the
near call model. In this case, a {$F+} compiler directive must be
used to force the far call model into effect.

The easiest way to satisfy the far call requirement is to place a
{$F+} directive at the beginning of the main program and each
unit. Alternatively, you can change the default $F setting to {$F+}
using a /$F+ command-line directive or the Force Far Calls check
box in the Options I Compiler dialog box. Compared to the cost of
mixing near and far calls, using far calls exclusively costs little­
one extra word of stack space per active procedure and one extra
byte per call.

Here we'll take a look at some examples of how to initialize the
overlay manager. Place the initialization code before the first call
to an overlaid routine. Typically you would do this at the
beginning of the program's statement part.

The following code shows just how little you need to initialize the
overlay manager:

begin
Ovrlnit('EDITOR.OVR') ;

end;

No error checks are made. If there isn't enough memory for the
overlay buffer or if the overlay file was not found, run-time error
208 ("Overlay manager not installed") occurs when you attempt
to call an overlaid routine.

Here's another simple example that expands on the previous one:

begin
Ovrlnit('EDITOR.OVR') ;
OvrlnitEMS;

end;

In this case, provided there is enough memory for the overlay
buffer and that the overlay file can be located, the overlay
manager checks to see if EMS memory is available. If it is, it loads
the overlay file into EMS.

Language Guide

Chapter 78, Using overlays

The initial overlay buffer size is as small as possible, or in other
words, just big enough to contain the largest overlay. This might
be adequate for some applications, but imagine a situation where
a particular function of a program is implemented through two or
more units, each of which is overlaid. If the total size of those
units is larger than the largest overlay, a substantial amount of
swapping occurs if the units make frequent calls to each other.

The solution is to increase the size of the overlay buffer so that
enough memory is available at any given time to contain all
overlays that make frequent calls to each other. The following
code demonstrates the use of OvrSetBuf to increase the overlay
buffer size:

canst
OvrMaxSize = 80000;

begin
Ovrlnit('EDITOR.OVR');
OvrlnitEMS;
OvrSetBuf(OvrMaxSize);

end;

There is no general formula for determining the ideal overlay
buffer size. Only an intimate knowledge of the application and a
bit of experimenting results in a suitable value.

Using OvrlnitEMS to place the overlay file in EMS doesn't
eliminate the need for an overlay buffer. Overlays must still be
copied from EMS into "normal" memory in the overlay buffer
before they can be executed, but because such in-memory
transfers are significantly faster than disk reads, there is less need
to increase the size of the overlay buffer.

Remember, OvrSetBuf expands the overlay buffer by shrinking the
heap. Therefore, the heap must be empty or OvrSetBufhas no
effect. If you are using the Graph unit, make sure you call
OvrSetBuf before you call InitGraph, which allocates memory on the
heap.

Here's a rather elaborate example of overlay-manager initiali­
zation with full error-checking:

canst
OvrMaxSize = 80000;

var
OvrNarne: string[79];
Size: Longint;

199

200

begin
OvrName := 'EDITOR.OVR';
repeat

OvrInit(OvrName);
if OvrResult = OvrNotFound then

begin
Writeln('Overlay file not found: " OvrName, , .');
Write('Enter correct overlay file name: ');
Readln(OvrName);

end;
until OvrResult <> OvrNotFound;
if OvrResult <> OvrOk then
begin

Writeln('Overlay-manager error.');
Halt (1) ;

end;
OvrInitEMS;
if OvrResult <> OvrOk then
begin

case OvrResult of
ovrIOError: Write('Overlay file I/O error');
ovrNoEMSDriver: Write('EMS driver not installed');
ovrNoEMSMemory: Write('Not enough EMS memory');

end;
Write('. Press Enter ... ');
Readln;

end;
OvrSetBuf(OvrMaxSize) ;

end;

First, if the default overlay file name isn't correct, the user is
repeatedly prompted for a correct file name.

Next, a check is made for other errors that might have occurred
during initialization. If an error is detected, the program halts
because errors in Ovrlnit are fatal. (If they are ignored, a run-time
error occurs upon the first call to an overlaid routine.)

Assuming successful initialization, a call to OvrlnitEMS is made
to load the overlay file into EMS if possible. In case of error, a
diagnostic message is displayed, but the program isn't halted.
Instead, it continues to read overlays from disk.

Finally, OvrSetBuf is called to set the overlay buffer size to a
suitable value, determined through analysis and experimentation
with the particular application. Errors from OvrSetBuf are
ignored, although OvrResult might return an error code of-3
(OvrNoMemory). If there isn't enough memory, the overlay

Language Guide

Initialization

manager continues to use the minimum buffer that was allocated
when the program started.

sections Like static units, overlaid units can have an initialization section.

Chapter 18, Using overlays

Although overlaid initialization code is no different from normal
overlaid code, the overlay manager must be initialized first so it
can load and execute overlaid units.

Referring to the earlier Editor program, assume that the EdInOut
and EdMain units have initialization code. This requires that
OvrInit is called before EdInOut's initialization code. The only way
to do that is to create an additional nonoverlaid unit that goes
before EdInOut and calls OvrInit in its initialization section:

unit Edlnit;
interface
implementation
uses Overlay;
const

OvrMaxSize = 80000;
begin

Ovrlnit('EDITOR.OVR') ;
OvrlnitEMS;
OvrSetBuf(OvrMaxSize) ;

end.

The EdInit unit must be listed in the program's uses clause before
any of the overlaid units:

program Editor;

{$F+}

uses Overlay, Crt, Dos, Edlnit, EdlnOut, EdFormat, EdPrint, EdFind,
EdMain;

{SO EdlnOut}
{SO EdFormat}
{SO EdPrint}
{SO EdFind}
{SO EdMain}

In general, although initialization code in overlaid units is indeed
possible, you should avoid it for a number of reasons.

First, the initialization code, even though it's executed only once,
is a part of the overlay, and occupies overlay-buffer space when­
ever the overlay is loaded. Second, if a number of overlaid units

201

202

What not to

have initialization code, each of them has to be read into memory
when the program starts.

A much better approach is to gather all the initialization code into
an overlaid initialization unit, which is called once at the begin-

. ning of the program, and then never referenced again.

overlay Certain units can't be overlaid. In particular, don't try to overlay
the following:

Debugging
overlays

• Units compiled in the {$O-} state. The compiler reports an error
if you attempt to overlay a unit that wasn't compiled with
{$O+}. Such nonoverlay units include System, Overlay, Crt,
Graph, Turbo3, and Graph3.

• Units that contain interrupt handlers. Due to the non-reentrant
nature of the DOS operating system, units that implement
interrupt procedures should not be overlaid. An example of
such a unit is the Crt standard unit, which implements a
Ctrl+Break interrupt handler.

• BGI drivers or fonts registered with calls to RegisterBGldriver or
RegisterBGIfont.

Calling overlaid routines via procedure pointers is fully sup­
ported by Turbo Pascal's overlay manager. Examples of the use of
procedure pointers include exit procedures and text-file device
drivers.

The overlay manager also supports passing overlaid procedures
and functions as procedural parameters and assigning overlaid
procedures and functions to procedural type variables.

Most debuggers have very limited overlay debugging capabilities,
if any at all. This isn't so with Turbo Pascal and Turbo Debugger.
The integrated debugger fully supports single-stepping and
breakpoints in overlays in a manner completely transparent to
you. By using overlays, you can easily engineer and debug huge
applications-all from inside the IDE or by using Turbo
Debugger.

Language Guide

External routines
in overlays Like normal Pascal procedures and functions, external assembly

language routines must observe certain programming rules to
work correctly with the overlay manager.

Chapter 18, Using overlays

If an assembly language routine makes calls to any overlaid
procedures or functions, the assembly language routine must use
the far model, and it must set up a stack frame using the BP
register. For example, assuming that OtherProc is an overlaid
procedure in another unit, and that the assembly language
routine ExternProc calls it, then ExternProc must use the FAR
model and set up a stack frame. For example,

ExternProc PROC FAR

PUSH BP jSave BP
MOV BP,SP jSet up stack frame
SUB SP,LocalSize jAllocate local variables

CALL OtherProc jCall another overlaid unit

MOV SP,BP jDispose of local variables
POP BP jRestore BP
RET ParamSize jReturn

ExternProc ENDP

LocalSize is the size of the local variables and ParamSize is the size
of the parameters. If LocalSize is zero, you can omit the two lines
to allocate and dispose of local variables.

These requirements are the same if ExternProc makes indirect
references to overlaid procedures or functions. For example, if
OtherProc makes calls to overlaid procedures or functions, but
isn't itself overlaid, ExternProc must still use the FAR model and
still has to set up a stack frame.

When an assembly language routine doesn't make any direct or
indirect references to overlaid procedures or functions, there are
no special requirements; the assembly language routine is free to
use the near model and it doesn't have to set up a stack frame.

Overlaid assembly language routines should not create variables
in the code segment, because any modifications made to an
overlaid code segment are lost when the overlay is disposed of.
Likewise, pointers to objects based in an overlaid code segment

203

can't be expected to remain valid across calls to other overlays,
because the overlay manager freely moves around and disposes
of overlaid code segments.

Installing an overlay-read function

Don't attempt to call any
overlaid routines from within

your overlay-read function­
such calls crash the system.

204

The OvrReadBuf procedure variable lets you intercept overlay
load operations. For example, you can implement error handling
or check that a removable disk is present. Whenever the overlay
manager needs to read an overlay, it calls the function whose
address is stored in OvrReadBuf If the function returns zero, the
overlay manager assumes that the operation was successful; if the
function result is nonzero, the compiler generates run-time error
209. The OvrSeg parameter indicates what overlay to load, but as
you'll see later, you won't need to access this information.

To install your own overlay-read function, you must first save the
previous value of OvrReadBufin a variable of type OvrReadFunc,
and then assign your overlay-read function to OvrReadBuf Within
your read function, you should call the saved read function to
perform the actual load operation. Any validations you want to
perform, such as checking that a removable disk is present,
should go before the call to the saved read function, and any error
checking should go after the call.

The code to install an overlay-read function should go right after
the call to Ovrlnit; at this point, OvrReadBuf contains the address
of the default disk read function.

If you also call OvrlnitEMS, it uses your read function to read
overlays from disk into EMS memory, and if no errors occur, it
stores the address of the default EMS read function in
Ovr ReadBuf If you also wish to override the EMS read function,
simply repeat the installation process after the call to OvrlnitEMS.

The default disk-read function returns zero if it succeeds, or a
DOS error code if it fails. Likewise, the default EMS-read function
returns 0 if it succeeds, or an EMS error code (ranging from $80
through $FF) if it fails. For details on DOS error codes, refer to the
Programmer's Reference. For details on EMS error codes, refer to
your Expanded Memory Specification documentation.

The following code fragment demonstrates how to write and
install an overlay-read function. The new overlay-read function
repeatedly calls the saved overlay-read function until no errors

Language Guide

occur. Any errors are passed to the DOSError or EMSError pro­
cedures (not shown here) so that they can present the error to the
user. Notice how the OvrSeg parameter is just passed on to the
saved overlay-read function and never directly handled by the
new overlay-read function.

uses Overlay;
var

SaveOvrRead: OvrReadFunc;
UsingEMS: Boolean;

function MyOvrRead(OvrSeg: Word): Integer; far;
var

E: Integer;
begin

repeat
E := SaveOvrRead(OvrSeg);
if E <> 0 then

if UsingEMS then
EMSError(E) else DOSError(E);

until E = 0;
MyOvrRead := 0;

end;

begin
OvrInit('MYPROG.OVR') ;
SaveOvrRead := OvrReadBuf;
OvrReadBuf := MyOvrRead;
UsingEMS := False;
OvrInitEMS;
if OvrResult = OvrOK then
begin

SaveOvrRead := OvrReadBuf;
OvrReadBuf := MyOvrRead;
UsingEMS := True;

end;

end.

{ Save disk default
{ Install ours

Save EMS default
{ Install ours

Overlays in . EXE files

Chapter 78, Using overlays

Turbo Pascal allows you to store your overlays at the end of your
application's .EXE file rather than in a separate .OVR file. To
attach an .OVR file to the end of an .EXE file, use the DOS COPY
command with a 18 command-line switch, for example,

COPY/B MYPROG.EXE + MYPROG.OVR

205

206

You must make sure that the .EXE file was compiled without
Turbo Debugger debug information. In the IDE, make sure the
Standalone option isn't checked in Options I Debugger. With the
command-line version of the compiler, don't specify a IV switch.

To read overlays from the end of an .EXE file instead of from a
separate .OVR file, simply specify the .EXE file name in the call to
Ovrlnit. If you are running under DOS 3.x or greater, you can use
the ParamStr standard function to obtain the name of the .EXE file;
for example,

Ovrlnit(PararnStr(O))i

Language Guide

p A R T

3

Inside Turbo Pascal

207

208 Language Guide

c H A p T E R

19

Memory issues
This chapter describes in detail the ways Turbo Pascal programs
use memory. We'll look at the memory map of a Turbo Pascal
application, internal data formats, the heap manager, and direct
memory access.

The Turbo Pascal memory map

Chapter 79, Memory issues

Figure 19.1 depicts the memory map of a Turbo Pascal program.

The Program Segment Prefix (PSP) is a 256-byte area built by DOS
when the .EXE file is loaded. The segment address of PSP is
stored in the predeclared variable PrefixSeg.

Each module, which includes the main program and each unit,
has its own code segment. The main program occupies the first
code segment; the code segments that follow it are occupied by
the units (in reverse order from how they are listed in the uses
clause), and the last code segment is occupied by the System unit.
The size of a single code segment can't exceed 64K, but the total
size of the code is limited only by the available memory.

209

Figure 19.1
Turbo Pascal memory map

210

Top of DOS memory
HeapEnd--r-----------------------.

Free memory

HeapPtr - ...•••.......... "f

Heap (grows upward)
HeapOrg --+--------=---=-----=-----------~ OvrHeapEnd

Overlay buffer
1------------------------....- OvrHeapOrg

Stack (grows downward)

1
SSeg:SPtr- --------------------------- - -------

Free stack
SSeg:OOOO-I--------------I

Global variables
- -- - - - - -- - -- - - - -- - - - - - -- - -- - -- - --- -I+---

Typed constants
DSeg:OOOO _i--------------i

System unit code segment

First unit code segment

1---__ ---'-_- -
Last unit code segment

Main program code segment

Program segment prefix (PSP)

PrefixSeg __ "----------------------------'
Low memory

Contents
of an

.EXE file
image

The data segment (addressed through D5) contains all typed
constants followed by all global variables. The D5 register is never
changed during program execution. The size of the data segment
can't exceed 64K.

On entry to the program, the stack segment register (55) and the
stack pointer (5P) are loaded so that 55:5P points to the first byte
past the stack segment. The 55 register is never changed during
program execution, but 5P can move downward until it reaches

Language Guide

the bottom of the segment. The size of the stack segment can't
exceed 64K; the default size is 16K, but this can be changed with a
$M compiler directive.

The Overlay standard unit uses the overlay buffer to store overlaid
code. The default size of the overlay buffer corresponds to the size
of the largest overlay in the program; if the program has no
overlays, the size of the overlay buffer is zero. The size of the
overlay buffer can be increased through a call to the OvrSetBuf
routine in the Overlay unit; in that case, the size of the heap is
decreased accordingly, by moving HeapOrg upwards.

The heap stores dynamic variables, that is, variables allocated
through calls to the New and GetMem standard procedures. It
occupies all or some of the free memory left when a program is
executed. The actual size of the heap depends on the minimum
and maximum heap values, which can be set with the $M com­
piler directive. Its size is guaranteed to be at least the minimum
heap size and never more than the maximum heap size. If the
minimum amount of memory isn't available, the program doesn't
execute. The default heap minimum is 0 bytes, and the default
heap maximum is 640K; this means that by default the heap
occupies all remaining memory.

As you might expect, the heap manager (which is part of Turbo
Pascal's run-time library) manages the heap. It's described in
detail in the following section.

The heap manager

Chapter 79, Memory issues

The heap is a stack-like structure that grows from low memory in
the heap segment. The bottom of the heap is stored m the variable
HeapOrg, and the top of the heap, corresponding to the bottom of
free memory, is stored in the variable HeapPtr. Each time a
dynamic variable is allocated on the heap (via New or GetMem),
the heap manager moves HeapPtr upward by the size of the
variable, in effect stacking the dynamic variables on top of each
other.

HeapPtr is always normalized after each operation, forcing the
offset part into the range $0000 to $OOOF. The maximum size of a
single variable that can be allocated on the heap is 65,519 bytes
(corresponding to $10000 minus $OOOF), because every variable
must be completely contained in a single segment.

211

Disposal methods
The dynamic variables stored on the heap are disposed of in one
of two ways: (1) through Dispose or FreeMem or (2) through Mark
and Release. The simplest scheme is that of Mark and Release; for
example, if the following statements are executed:

New(Ptrl)i
New(Ptr2)i
Mark (P) i

New(Ptr3)i
New(Ptr4)i
New(Ptr5) i

the layout of the heap will then look like this figure:

Figure 19.2 HeapEnd High
memory Disposal method using Mark

and Release

Executing Release(HeapOrg)
completely disposes of the

entire heap because
HeapOrg points to the

bottom of the heap.

212

HeapPtr

Ptr5

Ptr4

Ptr3

Ptr2

Ptr1

Contents of Ptr5"

Contents of Ptr4"

Contents of Ptr3"

Contents of Ptr2"

Contents of Ptr1" Low
memory

The Mark(P) statement marks the state of the heap just before Ptr3
is allocated (by storing the current HeapPtr in P). If the statement
Release(P) is executed, the heap layout becomes like that of
Figure 19.3, effectively disposing of all pointers allocated since the
call to Mark.

Language Guide

Figure 19.3
Heap layout with Release(P) HeapEnd -+r--------------,

executed
High
memory

Chapter 79, Memory issues

HeapPtr~-------------l

Contents of Ptr2"
Ptr2-.--------------i

Contents of Ptr1"
Ptr1 ----------------'

Low
memory

For applications that dispose of pointers in exactly the reverse
order of allocation, the Mark and Release procedures are very effi­
cient. Yet most programs tend to allocate and dispose of pointers
in a more random manner, requiring the more sophisticated
management technique implemented by Dispose and FreeMem.
These procedures allow an application to dispose of any pointer
at any time.

When a dynamic variable that isn't the topmost variable on the
heap is disposed of through Dispose or FreeMem, the heap be­
comes fragmented. Assuming that the same statement sequence
has been executed, then after executing Dispose(Ptr3), a "hole" is
created in the middle of the heap (see Figure 19.4).

213

214

Figure 19.4
Creating a "hole" in the HeapEnd

heap
High
memory

HeapPtr

Ptr5

Ptr4

Ptr2

Ptr1

Contents of Ptr5"

Contents of Ptr4"

Contents of Ptr2"

Contents of Ptr1" Low
memory

If New(Ptr3) had been executed now, it would again occupy the
same memory area. On the other hand, executing Dispose(Ptr4)
enlarges the free block, because Ptr3 and Ptr4 were neighboring
blocks (see Figure 19.5).

Figure 19.5
Enlarging the free block HeapEnd --.---------------, High

memory

HeapPtr--t----------------i
Contents of Ptr5"

Ptr5 --t----~-------____i

Contents of Ptr2"
Ptr2 -+/------------____i

Contents of Ptr1"
Ptr1 ----------------'

Low
memory

Finally, executing Dispose(PtrS) first creates an even bigger free
block, and then lowers HeapPtr. This, in effect, releases the free
block, because the last valid pointer is now Ptr2 (see Figure 19.6).

Language Guide

Figure 19.6
Releasing the free block HeapEnd ~----------------, High

memory

The free list

Chapter 79, Memory issues

HeapPtr-t----------------i
Contents of Ptr2"

Ptr2 -t----------------i
Contents of Ptr1"

Ptr1 -""----------------'
Low
memory

The heap is now in the same state as it would be after executing
Release(P), as shown in Figure 19.3. The free blocks created and
destroyed in the process were tracked for possible reuse, however.

The addresses and sizes of the free blocks generated by Dispose
and FreeMem operations are kept on afree list. Whenever a
dynamic variable is allocated, the free list is checked before the
heap is expanded. If a free block of adequate size exists (it's
greater than or equal to the size of the requested block size), it's
used.

The Release procedure always clears the free list, therefore causing
the heap manager to "forget" about any free blocks that might
exist below the heap pointer. If you mix calls to Mark and Release
with calls to Dispose and FreeMem, you must ensure that no such
free blocks exist.

The FreeList variable in the System unit points to the first free
block in the heap. This block contains a pointer to the next free
block, which contains a pointer to the following free block, and so
on. The last free block contains a pointer to the top of the heap
(that is, to the location given by HeapPtr). If there are no free
blocks on the free list, FreeList will be equal to HeapPtr.

The format of the first eight bytes of a free block are given by the
TFreeRec type as follows:

215

216

type
PFreeRec = ATFreeRec;
TFreeRec = record

Next: PFreeRec;
Size: Pointer;

end;

The Next field points to the next free block, or to the same location
as HeapPtr if the block is the last free block. The Size field encodes
the size of the free block. The value in Size isn't a normal 32-bit
value; rather, it's a "normalized" pointer value with a count of free
paragraphs (16-byte blocks) in the high word, and a count of free
bytes (between 0 and 15) in the low word. The following BlockSize
function converts a Size field value to a normal Longint value:

function BlockSize(Size: Pointer): Longint;
type

PtrRec = record La, Hi: Word end;
begin

BlockSize := Longint(PtrRec(Size) .Hi) * 16 + PtrRec(Size) .Lo;
end;

To guarantee that there will always be room for a TFreeRec at the
beginning of a free block, the heap manager rounds the size of
every block allocated by New or GetMem upwards to an 8-byte
boundary. Eight bytes are allocated for blocks of size 1 .. 8, 16 bytes
are allocated for blocks of size 9 .. 16, and so on. This might seem
an excessive waste of memory at first, and it would be if every
block was just 1 byte in size. Blocks are usually larger, however,
and so the relative size of the unused space is less.

The 8-byte granularity factor ensures that a number of random
allocations and deallocations of blocks of varying small sizes,
such as would be typical for variable-length line records in a text­
processing program, don't heavily fragment the heap. For
example, say a 50-byte block is allocated and disposed of, thereby
becoming an entry on the free list. The block would have been
rounded to 56 bytes (7*8), and a later request to allocate anywhere
from 49 to 56 bytes would completely reuse the block, instead of
leaving 1 to 7 bytes of free (but most likely unusable) space, which
would fragment the heap.

Language Guide

The HeapError
variable

Chapter 79, Memory issues

The HeapError variable allows you to install a heap-error function,
which is called whenever the heap manager can't complete an
allocation request. HeapError is a pointer that points to a function
with the following header:

function HeapFunc(Size: Word): Integer; far;

Note that the far directive forces the heap-error function to use
the FAR call model.

The heap-error function is installed by assigning its address to the
HeapError variable:

HeapError := @HeapFunc;

The heap-error function is called whenever a call to New or
GetMem can't complete the request. The Size parameter contains
the size of the block that couldn't be allocated, and the heap-error
function should attempt to free a block of at least that size.

Depending on its success, the heap-error function should return 0,
I, or 2. A return of 0 indicates failure, causing a run-time error to
occur immediately. A return of 1 also indicates failure, but instead
of a run-time error, it causes New or GetMem to return a nil
pointer. Finally, a return of 2 indicates success and causes a retry
(which could also cause another call to the heap-error function).

The standard heap-error function always returns 0 and causes a
run-time error whenever a call to New or GetMem can't be
completed. For many applications, however, the simple heap­
error function that follows is more appropriate:

function HeapFunc(Size: Word): Integer; far;
begin

HeapFunc := 1;
end;

When installed, this function causes New or GetMem to return nil
when they can't complete the request, instead of aborting the
program.

A call to the heap-error function with a Size parameter of 0 means
that the heap manager has just expanded the heap by moving
HeapPtr upwards. This occurs whenever there are no free blocks
on the free list, or when all free blocks are too small for the
allocation request. Such a call doesn't indicate an error condition,

217

because there was still adequate room for expansion between
HeapPtr and HeapEnd. Instead, the call indicates that the unused
area above HeapPtr has shrunk, and the heap manager ignores the
return value.

Internal data formats

Integer types

Char types

Boolean types

218

The next several pages discuss the internal data formats of Turbo
Pascal.

The format selected to represent an integer-type variable depends
on its minimum and maximum bounds:

• If both bounds are within the range -128 . .127 (Shortint), the
variable is stored as a signed byte.

• If both bounds are within the range 0 .. 255 (Byte), the variable is
stored as an unsigned byte.

• If both bounds are within the range -32768 . .32767 (Integer), the
variable is stored as a signed word.

• If both bounds are within the range 0 .. 65535 (Word), the variable
is stored as an unsigned word.

• Otherwise, the variable is stored as a signed double word
(Longint).

A Char, or a subrange of a Char type, is stored as an unsigned
byte.

A Boolean type is stored as a Byte, a ByteBool type is stored as a
Byte, a WordBool type is stored as a Word, and a LongBool type is
stored as a Longint.

A Boolean type can assume the values 0 (False) and 1 (True).
ByteBool, WordBool, and LongBool types can assume the value of 0
(False) or nonzero (True).

Language Guide

Enumerated
types

Floating-point
types

The Real type

Chapter 79, Memory issues

An enumerated type is stored as an unsigned byte if the
enumeration has 256 or fewer values; otherwise, it's stored as an
unsigned word.

The floating-point types (Real, Single, Double, Extended, and Camp)
store the binary representations of a sign (+ or -), an exponent, and
a significand. A represented number has the value

+/- significand x 2exponent

where the significand has a single bit to the left of the binary
decimal point (that is, 0 <= significand < 2).

In the figures that follow, msb means most significant bit, and lsb
means least significant bit. The leftmost items are stored at the
highest addresses. For example, for a real-type value, e is stored in
the first byte,fin the following five bytes, and s in the most
significant bit of the last byte.

A 6-byte (48-bit) Real number is divided into three fields:

width in bits
1 39

msb Isbmsb

The value v of the number is determined by the following:

if 0 < e <= 255, then v = (-1)8 * 2(e-129) * (lof).

if e = 0, then v = o.

8

e

Isb

The Real type can't store denormals, NaNs, or infinities.
Denormals become zero when stored in a Real, and NaNs and
infinities produce an overflow error if an attempt is made to store
them in a Real.

219

220

The Single type A 4-byte (32-bit) Single number is divided into three fields:

width in bits
1 8 23

msb Isbmsb 19b

The value v of the number is determined by the following:

if 0 < e < 255, then v = (-1)5 * 2(e-127) * (lof).

if e = 0 and f <> 0, then v = (-1)5 * 2(-126) * (O.f).
if e = 0 and f = 0, then v = (-1)5 * O.
if e = 255 and f = 0, then v = (-1)5 * Inf.
if e = 255 and f <> 0, then v is a NaN.

The Double type An 8-byte (64-bit) Double number is divided into three fields:

width in bits
1 11 52

msb Isbmsb

The value v of the number is determined by the following:

if 0 < e < 2047, then v = (-1)5 * 2(e-1023) * (lof).

if e = 0 and f <> 0, then v = (-1)5 * 2(-1022) * (O.f).
if e = 0 and f = 0, then v = (-1)5 * o.
if e = 2047 and f = 0, then v = (-1)5 * Inf.
if e = 2047 and f <> 0, then v is a NaN.

The Extended type A la-byte (80-bit) Extended number is divided into four fields:

width in bits
1 15 63

e

msb 19b msb

The value v of the number is determined by the following:

if 0 <= e < 32767, then v = (-1)5 * 2(e-16383) * (i.f).

if e = 32767 and f = 0, then v = (-1)5 * Inf.
if e = 32767 and f <> 0, then v is a NaN.

19b

19b

Language Guide

The Camp type An 8-byte (64-bit) Camp number is divided into two fields:

width in bits

Pointer types

String types

Set types

Chapter 79, Memory issues

1 63

d

msb Isb

The value v of the number is determined by the following:

if s = 1 and d = 0, then v is a NaN

Otherwise, v is the two's complement 64-bit value.

A Pointer type is stored as two words (a double word), with the
offset part in the low word and the segment part in the high
word. The pointer value nil is stored as a double-word zero.

A string occupies as many bytes as its maximum length plus one.
The first byte contains the current dynamic length of the string,
and the following bytes contain the characters of the string. The
length byte and the characters are considered unsigned values.
Maximum string length is 255 characters plus a length byte
(stri ng [255]).

A set is a bit array, where each bit indicates whether an element is
in the set or not. The maximum number of elements in a set is 256,
so a set never occupies more than 32 bytes. The number of bytes
occupied by a particular set is calculated as

ByteSize = (Max div 8) - (Min div 8) + 1

where Min and Max are the lower and upper bounds of the base
type of that set. The byte number of a specific element E is

ByteNumber = (E div 8) - (Min div 8)

and the bit number within that byte is

BitNumber = E mod 8

where E denotes the ordinal value of the element.

221

Array types

Record types

Object types

222

An array is stored as a contiguous sequence of variables of the
component type of the array. The components with the lowest
indexes are stored at the lowest memory addresses. A multi­
dimensional array is stored with the rightmost dimension
increasing first.

The fields of a record are stored as a contiguous sequence of
variables. The first field is stored at the lowest memory address. If
the record contains variant parts, then each variant starts at the
same memory address.

The internal data format of an object resembles that of a record.
The fields of an object are stored in order of declaration, as a
contiguous sequence of variables. Any fields inherited from an
ancestor type are stored before the new fields defined in the
descendant type.

If an object type defines virtual methods, constructors, or destruc­
tors, the compiler allocates an extra field in the object type. This
16-bit field, called the virtual method table (VMT) field, is used to
store the offset of the object type's VMT in the data segment. The
VMT field immediately follows after the ordinary fields in the
object type. When an object type inherits virtual methods, con­
structors, or destructors, it also inherits a VMT field, so an addi­
tional one isn't allocated.

Initialization of the VMT field of an instance is handled by the
object type's constructor(s). A program never explicitly initializes
or accesses the VMT field.

The following examples illustrate the internal data formats of
object types:

Language Guide

Figure 19.7
Layouts of instances of

TLocation, TPoint, and TCircie

type
PLocation = ATLocation;
TLocation = object

X, Y: Integer;
procedure Init(PX, PY: Integer);
function GetX: Integer;
function GetY: Integer;

end;

PPoint = ATPoint;
TPoint = object(TLocation)

Color: Integer;
constructor Init(PX, PY, PColor: Integer);
destructor Done; virtual;
procedure Show; virtual;
procedure Hide; virtual;
procedure MoveTo(PX, PY: Integer); virtual;

end;

PCircle = ATCircle;
TCircle = object (TPoint)

Radius: Integer;
constructor Init(PX, PY, PColor, PRadius: Integer);
procedure Show; virtual;
procedure Hide; virtual;
procedure Fill; virtual;

end.

Figure 19.7 shows layouts of instances of TLocation, TPoint, and
TCircle; each box corresponds to one word of storage.

Location Point Circle

B x x
y y

Color Color
VMT VMT

Radius

Virtual method tables Each object type that contains or inherits virtual methods, con­
structors, or destructors has a VMT associated with it, which is
stored in the initialized part of the program's data segment. There
is only one VMT per object type (not one per instance), but two
distinct object types never share a VMT, no matter how identical
they appear to be. VMTs are built automatically by the compiler,
and are never directly manipulated by a program. Likewise,
pointers to VMTs are automatically stored in object type instances

Chapter 79, Memory issues 223

I

224

See page 225 for an
explanation of dynamic

method tables.

by the object type's constructor(s) and are never directly
manipulated by a program.

The first word of a VMT contains the size of instances of the
associated object type; this information is used by constructors
and destructors to determine how many bytes to allocate or
dispose of, using the extended syntax of the New and Dispose
standard procedures.

The second word of a VMT contains the negative size of instances
of the associated object type; this information is used by the
virtual method call validation mechanism to detect uninitialized
objects (instances for which no constructor call has been made),
and to check the consistency of the VMT. When virtual call
validation is enabled (using the {$R+} compiler directive, which
has been expanded to include virtual method checking), the
compiler generates a call to a VMT validation routine before each
virtual call. The VMT validation routine checks that the first word
of the VMT isn't zero, and that the sum of the first and the second
word is zero. If either check fails, the compiler generates run-time
error 210.

Enabling range checking and virtual method call checking slows
down your program and makes it somewhat larger, so use the
{R+} state only when debugging, and switch to the {$R-} state for
the final version of the program.

The third word of a VMT contains the data segment offset of the
object type's dynamic method table (DMT), or zero if the object
type has no dynamic methods.

The fourth word of a VMT is reserved and always contains zero.

Finally, starting at offset 8 in the VMT, is a list of 32-bit method
pointers, one per virtual method in the object type, in order of
declaration. Each slot contains the address of the corresponding
virtual method's entry point.

Figure 19.8 shows the layouts of the VMTs of the TPoint and
TCircle types; each small box corresponds to one word of storage,
and each large box corresponds to two words of storage.

Language Guide

Figure 19.8
TPoint and TCircle's VMT

layouts

Dynamic method
tables

Chapter 79, Memory issues

TPoint VMT TCircie VMT

8 10

-8 -10

0 0

0 0

@TPoint.Done @TPoint.Done

@TPoint.Show @TCircle.Show

@TPoint.Hide @TCircle.Hide

@TPoint.MoveTo @TPoint.MoveTo

@TCircle.Fili

Notice how TCircle inherits the Done and MoveTo methods from
TPoint, and how it overrides the Show and Hide methods.

As mentioned already, an object type's constructors contain
special code that stores the offset of the object type's VMT in the
instance being initialized. For example, given an instance P of
type Pointer, and an instance C of type TCircle, a call to P.Init
automatically stores the offset of TPoint's VMT in P's VMT field,
and a call to C.lnit likewise stores the offset of TCircle's VMT in C's
VMT field. This automatic initialization is part of a constructor's
entry code, so when control arrives at the begin of the construc­
tor's statement part, the VMT field Self is already set up.
Therefore, if the need arises, a constructor can make calls to
virtual methods.

The VMT for an object type contains a four-byte entry (a method
pointer) for each virtual method declared in the object type and
any of its ancestors. In cases where ancestral type(s) define a large
number of virtual methods, the process of creating derived types
can use up quite a lot of memory, especially if many derived types

225

226

are created. Even though the derived types can override only a
few of the inherited methods, the VMT of each derived type
contains method pointers for all inherited virtual methods, even if
they haven't changed.

Dynamic methods provide an alternative in such situations.
Instead of encoding a pointer for all late-bound methods in an
object type, a dynamic method table (DMT) encodes only the
methods that were overridden in the object type. When descendant
types override only a few of a large number of inherited late­
bound methods, the dynamic method table format uses less space
than the format used by VMTs.

The following two object types illustrate DMT formats:

type
TBase = object

X: Integer;
constructor Init;
destructor Done; virtual;
procedure P10; virtual 10;
procedure P20; virtual 20;
procedure P30; virtual 30;
procedure P40; virtual 40;

end;

type
TDerived = object(TBase)

Y: Integer;
constructor Init;
destructor Done; virtual;
procedure P10; virtual 10;
procedure P30; virtual 30;
procedure P50; virtual 50;

end;

Figures 19.9 and 19.10 shows the layouts of the VMTs and DMTs
of TBase and TDerived. Each small box corresponds to one word of
storage, and each large box corresponds to two words of storage.

Language Guide

Figure 19.9
TBase's VMT and DMT layouts

Chapter 19, Memory issues

TBase VMT TBase DMT

4 0

-4 Cached index

Offset of TBase DMT Cached entry offset

o 4

10
@TBase.Done

20

30

40

@TBase.P10

@TBase.P20

@TBase.P30

@TBase.P40

An object type has a DMT only if it introduces or overrides
dynamic methods. If an object type inherits dynamic methods, but
doesn't override any of them or introduce new ones, it simply
inherits the DMT of its ancestor.

As is the case for VMTs, DMTs are stored in the initialized part of
the application's data segment.

227

228

Figure 19.10 TDerived VMT TDerived DMT
TDerived's VMT and DMT

layouts 6 Offset of TBase DMT

File types

~--------------~

-6

Offset of TDerived DMT

o

@TDerived.Done

Cached index

Cached entry offset

3

10

30

50

@TDerived.P10

@TDerived.P30

@TDerived.P50

The first word of a DMT contains the data segment offset of the
parent DMT, or zero if there is no parent DMT.

The second and third words of a DMT are used to cache dynamic
method lookups, as is described on page 239.

The fourth word of a DMT contains the DMT entry count. It's
immediately followed by a list of words, each of which contain a
dynamic method index, and then followed by a list of correspond­
ing method pointers. The length of each list is given by the DMT
entry count.

File types are represented as records. Typed files and untyped
files occupy 128 bytes, which are laid out in the Dos unit as
follows:

Language Guide

Chapter 79, Memory issues

type
FileRec = record

Handle: Word;
Mode: Word;
RecSize: Word;
Private: array[1 .. 26] of Byte;
UserData: array[1 .. 16] of Byte;
Name: array[O .. 79] of Char;

end;

Text files occupy 256 bytes, which are laid out as follows:

type
TextBuf = array[O . . 127] of Char;
TextRec = record

Handle: Word;
Mode: Word;
BufSize: Word;
Private: Word;
BufPos: Word;
BufEnd: Word;
BufPtr: ATextBuf;
OpenFunc: Pointer;
InOutFunc: Pointer;
FlushFunc: Pointer;
CloseFunc: Pointer;
UserData: array[1 .. 16] of Byte;
Name: array[O .. 79] of Char;
Buffer: TextBuf;

end;

Handle contains the file's handle (when the file is open) as
returned by DOS.

The Mode field can assume one of the following J/ magic" values:

const
fmClosed = $D7BO;
fmlnput = $D7B1;
fmOutput = $D7B2;
fmlnOut = $D7B3;

fmClosed indicates that the file is closed. fmlnput and fmOutput
indicate that the file is a text file that has been reset (jmlnput) or
rewritten (jmOutput). fmlnOut indicates that the file variable is a
typed or an untyped file that has been reset or rewritten. Any
other value indicates that the file variable hasn't been assigned
(and thereby not initialized).

229

Procedural types

The UserData field is never accessed by Turbo Pascal, and is free
for user-written routines to store data in.

Name contains the file name, which is a sequence of characters
terminated by a null character (#0).

For typed files and untyped files, RecSize contains the record
length in bytes, and the Private field is unused but reserved.

For text files, BufPtr is a pointer to a buffer of BujSize bytes, BufPos
is the index of the next character in the buffer to read or write,
and BufEnd is a count of valid characters in the buffer. OpenFunc,
InOutFunc, FlushFunc, and CloseFunc are pointers to the I/O
routines that control the file. The section entitled "Text file device
drivers" in Chapter 13 provides information on that subject.

A procedural type is stored as a double word, with the offset part
of the referenced procedure in the low word and the segment part
in the high word.

Direct memory access

230

Turbo Pascal implements three predefined arrays, Mem, Mem W,
and MemL, which are used to directly access memory. Each com­
ponent of Mem is a byte, each component of MemW is a Word, and
each component of MemL is a Longint.

The Mem arrays use a special syntax for indexes: Two expressions
of the integer type Word, separated by a colon, are used to specify
the segment base and offset of the memory location to access.
Here are some examples:

Mem[$0040:$0049] := 7i
Data := MemW[Seg(V) :OfS(V)]i
MemLong := MemL[64:3*4]i

The first statement stores the value 7 in the byte at $0040:$0049.
The second statement moves the Word value stored in the first 2
bytes of the variable V into the variable Data. The third statement
moves the Longint value stored at $0040:$000C into the variable
MemLong.

Language Guide

Direct port access

Chapter 79, Memory issues

For access to the 80x86 CPU data ports, Turbo Pascal implements
two predefined arrays, Port and PortW. Both are one-dimensional
arrays, and each element represents a data port, whose port
address corresponds to its index. The index type is the integer
type Word. Components of the Port array are of type Byte, and
components of the PortWarray are of type Word.

When a value is assigned to a component of Port or PortW, the
value is output to the selected port. When a component of Port or
PortWis referenced in an expression, its value is input from the
selected port.

Use of the Port and Port W arrays is restricted to assignment and
reference in expressions only; that is, components of Port and
PortW can't be used as variable parameters. Also, references to the
entire Port or PortW array (reference without index) aren't
allowed.

231

232 Language Guide

c H A p T E R

20

Control issues
This chapter describes in detail the various ways that Turbo
Pascal implements program control. Included are calling con­
ventions and exit procedures.

Calling conventions

Chapter 20, Control issues

Parameters are transferred to procedures and functions via the
stack. Before calling a procedure or function, the parameters are
pushed onto the stack in their order of declaration. Before return­
ing, the procedure or function removes all parameters from the
stack. '

The skeleton code for a procedure or function call looks like this:

PUSH Paraml
PUSH Param2

PUSH PararnX
CALL ProcOrFunc

Parameters are passed either by reference orby value. When a
parameter is passed by reference, a pointer that points to the
actual storage location is pushed onto the stack. When a param­
eter is passed by value, the actual value is pushed onto the stack.

233

Variable
parameters Variable parameters (var parameters) are always passed by

reference-a pointer that points to the actual storage location.

Value parameters

234

Value parameters are passed by value or by reference depending
on the type and size of the parameter. In general, if the value
parameter occupies 1, 2, or 4 bytes, the value is pushed directly
onto the stack. Otherwise a pointer to the value is pushed, and the
procedure or function then copies the value into a local storage
location.

The 8086 doesn't support byte-sized PUSH and POP instructions,
so byte-sized parameters are always transferred onto the stack as
words. The low-order byte of the word contains the value, and
the high-order byte is unused (and undefined).

An integer type or parameter is passed as a byte, a word, or a
double word, using the same format as an integer-type variable.
(For double words, the high-order word is pushed before the
low-order word so that the low-order word ends up at the lowest
address.)

A Char parameter is passed as an unsigned byte.

A Boolean parameter is passed as a byte with the value 0
or 1.

An enumerated-type parameter is passed as an unsigned byte if
the enumeration has 256 or fewer values; otherwise, it's passed as
an unsigned word.

A floating-point type parameter (Real, Single, Double, Extended,
and Comp) is passed as 4,6,8, or 10 bytes on the stack. This is an
exception to the rule that only 1-, 2-, and 4-byte values are passed
directly on the stack.

A pointer-type parameter is passed as two words (a double
word). The segment part is pushed before the offset part so that
the offset part ends up at the lowest address.

A string-type parameter is passed as a pointer to the value.

For a set type parameter, if the bounds of the element type of the
set are both within the range 0 to 7, the set is passed as a byte. If

Language Guide

Open parameters

Function results

Chapter 20, Control issues

the bounds are both within the range 0 to 15, the set is passed as a
word. Otherwise, the set is passed as a pointer to an unpacked set
that occupies 32 bytes.

Arrays and records with I, 2, or 4 bytes are passed directly onto
the stack. Other arrays and records are passed as pointers to the
value.

Open string parameters are passed by first pushing a pointer to
the string and then pushing a word containing the size attribute
(maximum length) of the string.

Open array parameters are passed by first pushing a pointer to
the array and then pushing a word containing the number of
elements in the array less one.

When using the built-in assembler, the value that the High
standard function returns for an open parameter can be accessed
by loading the word just below the open parameter. In this
example, the FillString procedure, which fills a string to its
maximum length with a given character, demonstrates this.

procedure FillString(var Str: OpenString; Chr: Char); assembler;
asm

LES DI,Str { ES:DI = @Str }
MOV CX,Str.Word[-2) (CX = High(Str)
MOV AL,CL
CLD
STOSB (Set Str[O) }
MOV
REP

end;

AL,Chr
STOSB (Set Str[l .. High)

Ordinal-type function results are returned in the CPU registers:
Bytes are returned in AL, words are returned in AX, and double
words are returned in DX:AX (high-order word in DX, low-order
word in AX).

Real-type function results (type Real) are returned in the
DX:BX:AX registers (high-order word in DX, middle word in BX,
low-order word in AX).

235

NEAR and FAR

80x87-type function results (type Single, Double, Extended, and
Comp) are returned in the 80x87 coprocessor's top-of-stack register
(ST(O)).

Pointer-type function results are returned in OX:AX (segment part
in OX, offset part in AX).

For a string-type function result, the caller pushes a pointer to a
temporary storage location before pushing any parameters, and
the function returns a string value in that temporary location. The
function must not remove the pointer.

calls The 80x86 family of CPUs support two kinds of call and return
instructions: near and far. The near instructions transfer control to
another location within the same code segment, and the far
instructions allow a change of code segment.

A NEAR CALL instruction pushes a 16-bit return address (offset
only) onto the stack, and a FAR CALL instruction pushes a 32-bit
return address (both segment and offset). The corresponding RET
instructions pop only an offset or both an offset and a segment.

Turbo Pascal automatically selects the correct call model based on
the procedure's declaration. Procedures declared in the interface
section of a unit are far-they can be called from other units.
Procedures declared in a program orin the implementation
section of a unit are near-they can only be called from within
that program or unit.

For some specific purposes, a procedure can be required to be far.
For example, if a procedure or function is to be assigned to a
procedural variable, it must be far. The $F compiler directive is
used to override the compiler's automatic call model selection.
Procedures and functions compiled in the {$F+} state are always
far; in the {$F-} state, Turbo Pascal automatically selects the
correct model. The default state is {$F-}.

Nested
procedures and

functions
A procedure or function is said to be nested when it's declared
within another procedure or function. By default, nested proce­
dures and functions always use the near call model, because they
are visible only within a specific procedure or function in the
same code segment. In an overlaid application, however, a {$F+}

236 Language Guide

Nested procedures and
functions can't be declared

with the external directive,
and they can't be

procedural parameters.

Method calling
conventions

Chapter 20, Control issues

directive is generally used to force all procedures and functions to
be far, including those that are nested.

When calling a nested procedure or function, the compiler
generates a PUSH BP instruction just before the CALL, in effect
passing the caller's BP as an additional parameter. Once the called
procedure has set up its own BP, the caller's BP is accessible as a
word stored at [BP + 4], or at [BP + 6] if the procedure is far. Using
this link at [BP + 4] or [BP + 6], the called procedure can access the
local variables in the caller's stack frame. If the caller itself is also a
nested procedure, it also has a link at [BP + 4] or [BP + 6], and so
on. The following example demonstrates how to access local
variables from an inline statement in a nested procedure:

procedure A; near;
var

IntA: Integer;

procedure B; far;
var

IntB: Integer;

procedure C; near;
var

IntC: Integer;
begin

asm
MOV
MOV
MOV
MOV
MOV
MOV
MOV

end;
end;

begin C end;

begin Bend;

AX,l
IntC,AX
BX, [BPt4]
SS: [BXtOFFSET IntB],AX
BX, [BPt4]
BX, S S: [BX t 6]
SS: [BXtOFFSET IntA],AX

{ IntC := 1 }
{ B's stack frame}
{ IntB := 1 }
{ B's stack frame}
{ A's stack frame}
{ IntA := 1 }

Methods use the same calling conventions as ordinary procedures
and functions, except that every method has an additional
implicit parameter, Self, that corresponds to a var parameter of the
same type as the method's object type. The Self parameter is
always passed as the last parameter, and always takes the form of
a 32-bit pointer to the instance through which the method is

237

238

Virtual method

called. For example, given a variable PP of type PPoint as defined
on page 223, the call PP/\.MoveTo(10, 20) is coded as follows:

MOV AX,10 iLoad 10 into AX
PUSH AX iPass as PX parameter
MOV AX,20 iLoad 20 into AX
PUSH AX iPass as PY parameter
LES DI,PP iLoad PP into ES:DI
PUSH ES iPass as Self parameter
PUSH DI
MOV DI,ES: [DI+6] iPick up VMT offset from VMT field
CALL DWORD PTR [DI+20] iCall VMT entry for MoveTo

Upon returning, a method must remove the Self parameter from
the stack, just as it must remove any normal parameters.

Methods always use the far call model, regardless of the setting of
the {$F} compiler directive.

calls To call a virtual method, the compiler generates code that picks
up the VMT address from the VMT field in the object, and then
calls via the slot associated with the method. For example, given a
variable PP of type Point (see page 223), the call PP/\.Show
generates the following code:

LES DI,PP iLoad PP into ES:DI
PUSH ES iPass as Self parameter
PUSH DI
MOV DI,ES: [DI+6] iPick up VMT offset from VMT field
CALL DWORD PTR [DI+12] iCall VMT entry for Show

The type compatibility rules of object types allow PP to point at a
Point or a TCircle, or at any other descendant of TPoint. And if you
examine the VMTs shown on page 225, you'll see that for a TPoint,
the entry at offset 12 in the VMT points to TPoint.Show; whereas
for a TCircle, it points to TCircle.Show. Therefore, depending upon
the actual run-time type of PP, the CALL instruction calls
TPoint.Show or TCircle.Show, or the Show method of any other de­
scendant of TPoint.

If Show had been a static method, the compiler would have
generated this for the call to PP/\.Show:

Language Guide

Dynamic method
calls

Chapter 20, Control issues

LES Dl,PP
PUSH ES
PUSH Ol
CALL TPoint.Show

iLoad PP into ES:Dl
iPass as Self parameter

iDirectly call TPoint.Show

Here, no matter what PP points to, the code always calls the
TPoint.Show method.

Dispatching a dynamic method call is somewhat more compli­
cated and time consuming than dispatching a virtual method call.
Instead of using a CALL instruction to call through a method
pointer at a static offset in the VMT, the object type's DMT and
parent DMTs must be scanned to find the topmost occurrence of a
particular dynamic method index, and then a call must be made
through the corresponding method pointer. This process involves
far more instructions than can be coded in-line, so the Turbo
Pascal run-time library (RTL) contains a dispatch-support routine
that is used when making dynamic method calls.

Had the Show method of the preceding type TPoint been declared
as a dynamic method (with a dynamic method index of 200), the
call PPA.Show, where PP is of type Point, would generate the
following code:

LES Ol,PP iLoad PP into ES:Dl
PUSH ES iPass as Self parameter
PUSH Ol
MOV Ol,EX: [0l+6] iPick up VMT offset from VMT field
MOV AX,200 iLoad dynamic method index into AX
CALL Dispatch iCall RTL routine to dispatch call

The RTL dispatcher first picks up the DMT offset from the VMT
pointed to by the DI register. Then, using the" cached index" field
of the DMT, the dispatcher checks if the dynamic method index of
the method being called is the same as the last one that was
called. If so, it immediately transfers control to the method, by
jumping indirectly through the method pointer stored at the
offset given by the" cached entry offset" field.

If the dynamic index of the method being called isn't the same as
the one stored in the cache, the dispatcher scans the DMT and the
parent DMTs (by following the parent links in the DMTs) until it
locates an entry with the given dynamic method index. The index
and the offset of the corresponding method pointer is then stored
in the DMT's cache fields, and control is transferred to the

239

Constructors and
destructors

method. If, for some reason, the dispatcher can't find an entry
with the given dynamic method index, indicating that the DMTs
have somehow been destroyed, it terminates the application with
a run-time error 210.

In spite of caching and a highly optimized RTL dispatch support
routine, the dispatching of a dynamic method call takes sub­
stantially longer than a virtual method call. When the actions
performed by the dynamic methods themselves take up a lot of
time, however, the amount of space saved by using DMTs might
outweigh this penalty.

Constructors and destructors use the same calling conventions as
other methods, except that an additional word-sized parameter,
called the VMT parameter, is passed on the stack just before the
Self parameter.

For constructors, the VMT parameter contains the VMT offset to
store in Selfs VMT field to initialize Self.

When a constructor is called to allocate a dynamic object using the
extended syntax of the New standard procedure, a nil pointer is
passed in the Self parameter. The constructor allocates a new
dynamic object, the address of which is passed back to the caller
in DX:AX when the constructor returns. If the constructor can't al-

See "Constructor error locate the object, a nil pointer is returned in DX:AX.
recovery" on page 706.

240

Entry and exit
code

Finally, when a constructor is called using a qualified-method
identifier (that is, an object type identifier, followed by a period
and a method identifier), a value of zero is passed in the VMT
parameter. This indicates to the constructor that it should not
initialize the VMT field of Self.

For destructors, a 0 in the VMT parameter indicates a normal call,
and a nonzero value indicates that the destructor was called using
the extended syntax of the Dispose standard procedure. This
causes the destructor to deallocate Self just before returning (the
size of Selfis found by looking at the first word of Self's VMT).

Each Pascal procedure and function begins and ends with
standard entry and exit code.

Language Guide

Register-saving
conventions

Exit procedures

Chapter 20, Control issues

This is the standard entry code:

PUSH
MOV
SUB

BP
BP,SP
SP,LocalSize

iSave BP
iSet up stack frame
iAllocate locals (if any)

LoealSize is the size of the local variables. The SUB instruction is
present only if LoealSize isn't O. If the procedure's call model is
near, the parameters start at BP + 4; if it's far, they start at BP + 6.

This is the standard exit code:

MOV
pOP
RET

SP,BP
BP
ParamSize

iDeallocate locals (if any)
iRestore BP
iRemove parameters and return

ParamSize is the size of the parameters. The RET instruction is
either a near or far return, depending on the routine's call model.

Procedures and functions should preserve the BP, SP, SS, and DS
registers. All other registers can be modified.

By installing an exit procedure, you can gain control over a
program's termination process. This is useful when you want to
make sure specific actions are carried out before a program
terminates; a typical example is updating and closing files.

The ExitProe pointer variable allows you to install an exit
procedure. The exit procedure is always called as a part of a
program's termination, whether it's a normal termination, a
termination through a call to Halt, or a termination due to a run­
time error.

An exit procedure takes no parameters and must be compiled
with a far procedure directive to force it to use the far call model.

When implemented properly, an exit procedure actually becomes
part of a chain of exit procedures. This chain makes it possible for
units as well as programs to install exit procedures. Some units
install an exit procedure as part of their initialization code and
then rely on that specific procedure to be called to clean up after
the unit. Closing files is such as example. The procedures on the

241

242

exit chain are executed in reverse order of installation. This
ensures that the exit code of one unit isn't executed before the exit
code of any units that depend upon it.

To keep the exit chain intact, you must save the current contents
of ExitProc before changing it to the address of your own exit
procedure. Also, the first statement in your exit procedure must
reinstall the saved value of ExitProc. The following program
demonstrates a skeleton method of implementing an exit
procedure:

program Testexit;
var

ExitSave: Pointer;

procedure MyExit; far;
begin

ExitProc := ExitSave;

end;

begin
ExitSave := ExitProc;
ExitProc := @MyExit;

end.

{ Always restore old vector first }

On entry, the program saves the contents of ExitProc in ExitSave,
and then installs the MyExit exit procedure. After having been
called as part of the termination process, the first thing MyExit
does is reinstall the previous exit procedure.

The termination routine in the run-time library keeps calling exit
procedures until ExitProc becomes nil. To avoid infinite loops,
ExitProc is set to nil before every call, so the next exit procedure is
called only if the current exit procequre assigns an address to
ExitProc. If an error occurs in an exit procedure, it won't be called
again.

An exit procedure can learn the cause of termination by
examining the ExitCode integer variable and the Error Addr pointer
variable.

In case of normal termination, ExitCode is zero and Error Addr is
nil. In case of termination through a call to Halt, ExitCode contains
the value passed to Halt, and ErrorAddr is nil. Finally, in case of
termination due to a run-time error, ExitCodecontains the error
code and ErrorAddr contains the address of the statement in error.

Language Guide

The last exit procedure (the one installed by the run-time library)
closes the Input and Output files. If ErrorAddr isn't nil, it outputs a
run-time error message.

If you wish to present run-time error messages yourself, install an
exit procedure that examines ErrorAddr and outputs a message if
it isn't nil. In addition, before returning, make sure to set
ErrorAddr to nil, so that the error isn't reported again by other exit
procedures.

Once the run-time library has called all exit procedures, it returns
to DOS, passing the value stored in ExitCode as a return code.

Interrupt handling

Writing interrupt
procedures

Chapter 20, Control issues

The Turbo Pascal run-time library and the code generated by the
compiler are fully interruptible. Also, most of the run-time library
is reentrant, which allows you to write interrupt service routines
in Turbo Pascal.

Declare interrupt procedures with the interrupt directive. Every
interrupt procedure must specify the following procedure header
(or a subset of it, as explained later):

procedure IntHandler(Flags, es, IP, AX, BX, ex, DX, SI, DI, DS, ES,
BP: Word};

interrupt;
begin

end;

As you can see, all the registers are passed as pseudoparameters
so you can use and modify them in your code. You can omit some
or all of the parameters, starting with Flags and moving towards
BP. It's an error to declare more parameters than are listed in the
preceding example, or to omit a specific parameter without also
omitting the ones before it (although no error is reported). For
example,

procedure IntHandler(DI, ES, BP: Word};
procedure IntHandler(SI, DI, DS, ES, BP: Word};

Invalid header }
{ Valid header }

243

244

On entry, an interrupt procedure automatically saves all registers
(regardless of the procedure header) and initializes the DS
register:

PUSH AX
PUSH BX
PUSH ex
PUSH DX
PUSH S1
PUSH DI

PUSH DS
PUSH ES
PUSH BP
MOV BP,SP
SUB SP,LocalSize
MOV AX,SEG DATA
MOV DS,AX

Notice the lack of a STI instruction to enable additional interrupts.
You should code this yourself (if required) using an inline
statement. The exit code restores the registers and executes an
interrupt-return instruction:

MOV SP, BP
pOP BP
pOP ES
pOP DS
pOP D1
pOP S1
pOP DX
POP ex
pOP BX
pOP AX

1RET

An interrupt procedure can modify its parameters. Changing the
declared parameters will modify the corresponding regi?ter when
the interrupt handler returns. This can be useful when you are
using an interrupt handler as a user service, much like the DOS
INT 21H services.

Interrupt procedures that handle hardware-generated interrupts
should not use any of Turbo Pascal's input and output or dynamic
memory allocation routines,because they aren't reentrant.
Likewise, no DOS functions can be used because DOS isn't
reentrant.

Language Guide

c H A p T E R

21

Optimizing your code

Turbo Pascal performs several different types of code optimi­
zations, ranging from constant folding and short-circuit Boolean
expression evaluation, all the way up to smart linking. The
following sections describe some of the types of optimizations
performed and how you can benefit from them in your programs.

Constant folding

If the operand(s) of an operator are constants, Turbo Pascal
evaluates the expression at compile time. For example,

X := 3 + 4 * 2

generates the same code as X . - 11, and

S := 'In' + 'Out'

generates the same code as S : = I InOut I.

Likewise, if an operand of an Abs, Chr, Hi, Length, Lo, Odd, Ord,
Pred, Ptr, Round, Succ, Swap, or Trunc function call is a constant,
the function is evaluated at compile time.

If an array index expression is a constant, the address of the
·component is evaluated at compile time. For example, accessing
Data[5, 5] is just as efficient as accessing a simple variable.

Chapter 2 7, Optimizing your code 245

Constant merging

Using the same string constant two or more times in a statement
part generates only one copy of the constant. For example, two or
more write ('Done') statements in the same statement part
references the same copy of the string constant 'Done'.

Short-circuit evaluation

Turbo Pascal implements short-circuit Boolean evaluation, which
means that evaluation of a Boolean expression stops as soon as
the result of the entire expression becomes evident. This guaran­
tees minimum execution time and usually ~inimum code size.
Short-circuit evaluation also makes possible the evaluation of
constructs that would not otherwise be legal. For example,

while (I <= Length{S)) and (S[I] <> ' ') do
Inc (I) i

while (P <> nil) and (pA.Value <> 5) do
p := pA.Nexti

In both cases, the second test isn't evaluated if the first test is
False.

The opposite of short-circuit evaluation is complete evaluation,
which is selected through a {$B+} compiler directive. In this state,
every operand of a Boolean expression is guaranteed to be
evaluated.

Constant parameters

Read more about constant
parameters on page 709.

246

Whenever possible, you should use constant parameters instead
of value parameters. Constant parameters are at least as efficient
as value parameters and, in many cases, more efficient. In
particular, constant parameters generate less code and execute
faster than value parameters for structured and string types.

Constant parameters are more efficient than value parameters
because the compiler doesn't have to generate copies of the actual
parameters upon entry to procedures or functions. Value
parameters have to be copied into local variables so that
modifications made to the formal parameters won't modify the

Language Guide

actual parameters. Because cons~ant formal parameters can't be
modified, the compiler has no need to generate copies of the
actual parameters, and code and stack space is saved.

Redundant pointer-load elimination

In certain situations, Turbo Pascal's code generator can eliminate
redundant pointer-load instructions, shrinking the size of the
code and allowing for faster execution. When the code generator
can guarantee that a particular pointer remains constant over a
stretch of linear code (code with no jumps into it), and when that
pointer is already loaded into a register pair (such as ES:DI), the
code generator eliminates additional redundant pointer-load
instructions in that block of code.

A pointer is considered constant if it's obtained from a variable
parameter (variable parameters are always passed as pointers) or
from the variable reference of a with statement. Because of this,
using with statements is often more efficient (but never less
efficient) than writing the fully-qualified variable for each
component reference.

Constant set inlining

When the right operand of the in operator is a set constant, the
compiler generates the inclusion test using inline eMP
instructions. Such inlined tests are more efficient than the code
that would be generated by a corresponding boolean expression
using relational operators. For example, this statement:

if ((Ch >= 'A') and (Ch <= 'Z')) or
((Ch >= 'a') and (Ch <= 'z')) then ... i

is less readable and also less efficient than this:

if Ch in [' A' .. ' Z', , a' .. ' z ' 1 then ... i

Because constant folding applies to set constants as well as to
constants of other types, it's possible to use const declarations
without any loss of efficiency:

Chapter 27, Optimizing your code 247

Small sets

const
Upper = [' A' .. ' Z '] ;
Lower = ['a' .. 'z'];
Alpha = Upper + Lower;

Given these declarations, this if statement generates the same
code as the previous if statement:

if Ch in Alpha then ...

The compiler generates very efficient code for operations on small
sets. A small set is a set with a lower bound ordinal value in the
range 0 .. 7 and an upper bound ordinal value in the range 0 .. 15.
For example, the following TByteSet and TWordSet are both small
sets.

type
TByteSet = set of 0 .. 7;
TWordSet = set of O .. 15;

Small set operations, such as union (+), difference (-), intersection
(*), and inclusion tests (in) are generated inline using AND, OR,
NOT, and TEST machine code instructions instead of calls to run­
time library routines. Likewise, the Include and Exclude standard
procedures generate inline code when applied to small sets.

Order of evaluation

248

As permitted by the Pascal standards, operands of an expression
are frequently evaluated differently from the left to right order in
which they are written. For example, the statement

I := F(J) div G(J);

where F and G are functions of type Integer, causes G to be eval­
uated before F, because this enables the compiler to produce
better code. For this reason, it's important that an expression
never depend on any specific order of evaluation of the embed­
ded functions. Referring to the previous example, if F must be
called before G, use a temporary variable:

Language Guide

T := F(J);

I : = T di v G (J) ;

~ . As an exception to this rule, when short-circuit evaluation is
enabled (the {$B-} state), Boolean operands grouped with and or
or are always evaluated from left to right.

Range checking

Assignment of a constant to a variable and use of a constant as a
value parameter is range-checked at compile time; no run-time
range-check code is generated. For example, X : = 999, where X is
of type Byte, causes a compile-time error.

Shift instead of multiply or divide

The operation X * C, where C is a constant and a power of 2, is
coded using a SHL instruction. The operation X div C, where X is
an unsigned integer (Byte or Word) and C is a constant and a
power of 2, is coded using a SHR instruction.

Likewise, when the size of an array's components is a power of 2,
a SI1L instruction (not a MUL instruction) is used to scale the
index expression.

Automatic word alignment

For more details, refer to
Chapter 2, "Compiler

directives," in the
Programmer's Reference.

By default, Turbo Pascal aligns all variables and typed constants
larger than 1 byte on a machine-word boundary. On all 16-bit
80x86 CPUs, word alignment means faster execution, because
word-sized items on even addresses are accessed faster than
words on odd addresses.

Data alignment is controlled through the $A compiler directive. In
the default {$A+} state, variables and typed constants are aligned
as described above. In the {$A-} state, no alignment measures are
taken.

Chapter 21, Optimizing your code 249

Eliminating dead code

Smart linking

When compiling to memory,
Turbo Pascal's smart linker is
disabled. This explains why

some programs become
smaller when compiled to

disk.

250

Statements that never execute don't generate any code. For
example, these constructs don't generate any code:

if False then
statement

while False do
statement

Turbo Pascal's built-in linker automatically removes unused code
and data when building an .EXE file. Procedures, functions, vari- '
ables, and typed constants that are part of the compilation, but are
never referenced, are removed from the .EXE file. The removal of
unused code takes place on a per procedure basis; the removal of
unused data takes place on a per declaration section basis.

Consider the following program:

program SmartLink;

const
H: array[O .. 15] of Char = '0123456789ABCDEF';

var
I, J: Integer;
X, Y: Real;

var
S: string[79];

var
A: array[l .. 10000] of Integer;

procedure P1 i
begin

A[l] := 1;
end;

procedure P2;
begin

I : = 1;
end;

Language Guide

procedure P3j

begin
S .- 'Turbo Pascal';
P2;

endj

begin
P3;

end.

The main program calls P3, which calls P2, so both P2 and P3 are
included in the .EXE file. Because P2 references the first var
declaration section, and P3 references the second var declaration,
I, /, X, Y, and S are also included in the .EXE file. No references
are made to Pl, however, and none of the included procedures
reference H and A, so these objects are removed.

Smart linking is especially valuable in connection with units that
implement procedure/ function libraries. An example of such a
unit is the Dos standard unit: It contains a number of procedures
and functions, all of which are seldom used by the same program.
If a program uses only one or two procedures from Dos, then only
these procedures are included in the final.EXE file, and the re­
maining ones are removed, greatly reducing the size of the .EXE
file.

Chapter 21, Optimizing your code 251

252 Language Guide

p A R T

4

Using Turbo Pascal with assembly
language

253

254 Language Guide

c H A p T E R

22

The built-in assembler

Turbo Pascal's built-in assembler allows you to write 8086/8087
and 80286/80287 assembler code directly inside your Pascal
programs. Of course, you can still convert assembler instructions
to machine code manually for use in inline statements, or link in
.OBJ files that contain external procedures and functions when
you want to mix Pascal and assembler.

The built-in assembler implements a large subset of the syntax
supported by Turbo Assembler and Microsoft's Macro Assembler.
The built-in assembler supports all 8086/8087 and 80286/80287
opcodes, and all but a few of Turbo Assembler's expression
operators.

Except for DB, DW, and DD (define byte, word, and double
word), none of Turbo Assembler's directives, such as EQU, PROC,
STRUC, SEGMENT, and MACRO, are supported by the built-in
assembler. Operations implemented through Turbo Assembler
directives, however, are largely matched by corresponding Turbo
Pascal constructs. For example, most EQU directives correspond
to const, var, and type declarations in Turbo Pascal, the PROC
directive corresponds to procedure and function declarations, and
the STRUC directive corresponds to Turbo Pascal record types. In
fact, Turbo Pascal's built-in assembler can be thought of as an
assembler language compiler that uses Pascal syntax for all
declarations.

Chapter 22, The built-in assembler 255

The asm statement

Register use

The built-in assembler is accessed through asm statements. This is
the syntax of an asm statement:

asm AsmStatement [Separator AsmStatement lend

AsmStatement is an assembler statement and Separator is a
semicolon, a new-line, or a Pascal comment.

Multiple assembler statements can be placed on one line if they
are separated by semicolons. A semicolon isn't required between
two assembler statements if the statements are on separate lines.
A semicolon doesn't indicate that the rest of the line is a com­
ment-comments must be written in Pascal style using { and} or
(* and *).

In general, the rules of register use in an asm statement are the
same as those of an external procedure or function. An asm state­
ment must preserve the BP, SP, SS, and DS registers, but can
freely modify the AX, BX, CX, DX, SI, DI, ES, and Flags registers.
On entry to an asm statement, BP points to the current stack
frame, SP points to the top of the stack, SS contains the segment
address of the stack segment, and DS contains the segment
address of the data segment. Except for BP, SP, SS, and DS, an
8sm statement can assume nothing about register contents on
entry to the statement.

Assembler statement syntax

256

This is the syntax of an assembler statement:

[Label ":" 1 < Prefix> [Opcode [Operand < "," Operand> 1 1

Label is a label identifier, Prefix is an assembler prefix opcode
(operation code), Opcode is an assembler instruction opcode or
directive, and Operand is an assembler expression.

Comments are allowed between assembler statements, but not
within them. For example, this is allowed:

Language Guide

Labels
Only the first 32 characters of
an identifier are significant in

the built-in assembler.

Instruction
opcodes

asm
MOV AX,l {Initial value}
MOV CX,lOO {Count}

end;

but this is an error:

asm
MOV {Initial value} AX,l;
MOV CX, {Count} 100 -

end;

Labels are defined in assembler as they are in Pascal-by writing
a label identifier and a colon before a statement. And as they are
in Pascal, labels defined in assembler must be declared in a label
declaration part in the block containing the asm statement. There
is one exception to this rule: local labels.

Local labels are labels that start with an at-sign (@). Because an
at-sign can't be part of a Pascal identifier, such local labels are
automatically restricted to use within asm statements. A local
label is known only within the asm statement that defines it (that
is, the scope of a local label extends from the asm keyword to the
end keyword of the asm statement that contains it).

Unlike a normal label, a local label doesn't have to be declared in
a label declaration part before it's used.

The exact composition of a local label identifier is an at-sign (@)
followed by one or more letters (A .. Z), digits (0 .. 9), underscores
(_), or at-signs. As with all labels, the identifier is followed by a
colon (:).

The built-in assembler supports all 8086/8087 and 80286/80287
instruction opcodes. 8087 opcodes are available only in the {$N+}
state (numeric processor enabled), 80286 opcodes are available
only in the {$G+} state (80286 code generation enabled), and 80287
opcodes are available only in the {$G+,N+} state.

For a complete description of each instruction, refer to your 80x86
and 80x87 reference manuals.

Chapter 22, The built-in assembler 257

RET instruction sizing The RET instruction opcode generates a near return or a far return
machine code instruction depending on the call model of the
current procedure or function.

procedure NearProc; near;
begin

asm
RET {Generates a near return }

end;
end;

procedure FarProc; far;
begin

asm
RET {Generates a far return }

end;
end;

On the other hand, the RETN and RETF instructions always
generate a near return and a far return, regardless of the call
model of the current procedure or function.

Automatic jump sizing Unless otherwise directed, the built-in assembler optimizes jump
instructions by automatically selecting the shortest, and therefore
most efficient form of a jump instruction. This automatic jump
sizing applies to the unconditional jump instruction OMP), and all
conditional jump instructions, when the target is a label (not a
procedure or function).

258

For an unconditional jump instruction OMP), the built-in
assembler generates a short jump (one byte opcode followed by a
one byte displacement) if the distance to the target label is within
-128 to 127 bytes; otherwise a near jump (one byte opcode
followed by a two byte displacement) is generated.

For a conditional jump instruction, a short jump (1 byte opcode
followed by a 1 byte displacement) is generated if the distance to
the target label is within -128 to 127 bytes; otherwise, the built-in
assembler generates a short jump with the inverse condition,
which jumps over a near jump to the target label (5 bytes in total).
For example, the assembler statement

JC Stop

where Stop isn't within reach of a short jump is converted to a
machine code sequence tha,t corresponds to this:

Language Guide

Assembler

JNC Skip
JMP Stop
Skip:

Jumps to the entry points of procedures and functions are always
either near or far, but never short, and conditional jumps to
procedures and functions are not allowed. You can force the
built-in assembler to generate an unconditional near jump or far
jump to a label by using a NEAR PTR or FAR PTR construct. For
example, the assembler statements

JMP NEAR PTR Stop
JMP FAR PTR Stop

always generate a near jump and a far jump, respectively, even if
Stop is a label within reach of a short jump.

directives Turbo Pascal's built-in assembler supports three assembler
directives: DB (define byte), DW (define word), and DD (define
double word). They each generate data corresponding to the
comma-separated operands that follow the directive.

The DB directive generates a sequence of bytes. Each operand can
be a constant expression with a value between -128 and 255, or a
character string of any length. Constant expressions generate one
byte of code, and strings generate a sequence of bytes with values
corresponding to the ASCII code of each character.

The DW directive generates a sequence of words. Each operand
can be a constant expression with a value between -32,768 and
65,535, or an address expression. For an address expression, the
built-in assembler generates a near pointer, that is, a word that
contains the offset part of the address.

The DD directive generates a sequence of double words. Each
operand can be a constant expression with a value between
-2,147,483,648 and 4,294,967,295, or an address expression. For an
address expression, the built-in assembler generates a far pointer,
that is, a word that contains the offset part of the address,
followed by a word that contains the segment part of the address.

The data generated by the DB, DW, and DD directives is always
stored in the code segment, just like the code generated by other
built-in assembler statements. To generate uninitialized or initial­
ized data in the data segment, you should use Pascal var or canst
declarations.

Chapter 22, The built-in assembler 259

260

Some examples of DB, DW, and DD directives follow:

asm
DB OFFH { One byte }
DB 0,99 { Two bytes }
DB 'A' { Ord('A') }
DB 'Hello world ... ' ,ODH,OAH String followed by CR/LF }
DB 12, "Turbo Pascal" { Pascal style string }
DW OFFFFH { One word }
DW 0,9999 { Two words }

DW 'A' Same as DB 'A',O }
DW 'BA' Same as DB 'A', 'B' }
DW MyVar { Offset of MyVar }
DW MyProc { Offset of MyProc }
DD OFFFFFFFFH { One double-word }
DD 0,999999999 { Two double-words }
DD 'A' Same as DB 'A' ,0,0,0 }
DD 'DCBA' Same as DB 'A', 'B', 'C', 'D' }
DD MyVar { Pointer to MyVar }
DD MyProc { Pointer to MyProc }

end;

In Turbo Assembler, when an identifier precedes a DB, DW, or DD
directive, it causes the declaration of a byte, word, or double­
word sized variable at the location of the directive. For example,
Turbo Assembler allows the following:

ByteVar DB
WordVar DW

MOV AL,ByteVar
MOV BX,WordVar

The built-in assembler doesn't support such variable declarations.
In Turbo Pascal, the only kind of symbol that can be defined in an
built-in assembler statement is a label. All variables must be de­
clared using Pascal syntax, and the preceding construct corre­
sponds to this:

var
ByteVar: Byte;
WordVar: Word;

asm
MOV AL,ByteVar
MOV BX,WordVar

end;

Language Guide

Operands

Table 22.1
Built-in assembler reseNed

words

Built-in assembler operands are expressions that consist of a
combination of constants, registers, symbols, and operators.
Although built-in assembler expressions are built using the same
basic principles as Pascal expressions, there are a number of
important differences, as will be explained later in this chapter.

Within operands, the following reserved words have a predefined
meaning to the built-in assembler:

AH CS LOW SI
AL CX MOD SP
AND DH NEAR SS
AX DI NOT ST
BH DL OFFSET TBYTE
BL DS OR TYPE
BP DWORD PTR WORD
BX DX QWORD XOR
BYTE ES SEG
CH FAR SHL
CL HIGH SHR

The reserved words always take precedence over user-defined
identifiers. For example, the code fragment

var
ch: Char;

asm
MOV CH, 1

end;

loads 1 into the CH register, not into the CH variable. To access a
user-defined symbol with the same name as a reserved word, you
must use the ampersand (&) identifier override operator:

asm
MOV &ch, 1

end;

It's strongly suggested that you avoid user-defined identifiers
with the same names as built-in assembler reserved words,
because such name confusion can easily lead to obscure and
hard -to-find bugs. .

Chapter 22, The built-in assembler 261

Expressions

Differences
between Pascal

and Assembler
expressions

262

The built-in assembler evaluates all expressions as 32-bit integer
values; it doesn't support floating-point and string values, except
string constants.

Built-in assembler expressions are built from expression elements
and operators, and each expression has an associated expression
class and expression type. These concepts are explained in the
following sections.

The most important difference between Pascal expressions and
built-in assembler expressions is that all built-in assembler expres­
sions must resolve to a constant value, a value that can be
computed at compile time. For example, given these declarations:

const
X = 10;
Y = 20;

var
Z: Integer;

the following is a valid built-in assembler statement:

asm
MOV Z,X+Y

end;

Because both X and Yare constants, the expression X + Y is
merely a more convenient way of writing the constant 30, and the
resulting instruction becomes a move immediate of the value 30
into the word-sized variable Z. But if you change X and Y to be
variables,

var
x, Y: Integer;

the built-in assembler can no longer compute the value of X + Yat
compile time. The correct built-in assembler construct to move the
sum of X and Y into Z is this:

asm
MOV l\t.,X
ADD l\t.,Y

MOV Z,l\t.

end;

Language Guide

Expression
elements

Constants

Another important difference between Pascal and built-in
assembler expressions is the way variables are interpreted. In a
Pascal expression, a reference to a variable is interpreted as the
contents of the variable, but in an built-in assembler expression, a
variable reference denotes the address of the variable. For example,
in Pascal, the expression X + 4, where X is a variable, means the
contents of X plus 4, whereas in the built-in assembler it means the
contents of the word at an address four bytes higher than the
address of X. So, even though you're allowed to write

asm
MOV AX,X+4

end;

the code doesn't load the value of X plus 4 into AX, but rather it
loads the value of a word stored four bytes beyond X. The correct
way to add 4 to the contents of X is:

asm
MOV AX,X
ADD AX,4

end;

The basic elements of an expression are constants, registers, and
symbols.

The built-in assembler supports two types of constants: numeric
constants and string constants.

Numeric constants

Numeric constants must be integers, and their values must be
between -2,147,483,648 and 4,294,967,295.

By default, numeric constants use decimal (base 10) notation, but
the built-in assembler supports binary (base 2), octal (base 8), and
hexadecimal (base 16) notations as well. Binary notation is se­
lected by writing a B after the number, octal notation is selected
by writing a letter 0 after the number, and hexadecimal notation
is selected by writing an H after the number or a $ before the
number.

Chapter 22, The built-in assembler 263

264

~ The B, 0, and H suffixes aren't supported in Pascal expressions.
Pascal expressions allow only decimal notation (the default) and
hexadecimal notation (using a $ prefix).

Numeric constants must start with one of the digits 0 through 9 or
a $ character; therefore, when you write a hexadecimal constant
using the H suffix, an extra zero in front of the number is required
if the first significant digit is one of the hexadecimal digits A
through F. For example, OBAD4H and $BAD4 are hexadecimal
constants, but BAP4H is an identifier because it starts with a letter
and not a digit.

String constants

String constants must be enclosed in single or double quotes. Two
consecutive quotes of the same type as the enclosing quotes count
as only one character. Here are some examples of string constants:

'Z'

'Turbo Pascal'
"That's all folks"
'"That"s all folks," he said.'
'100'

Notice in the fourth string the use of two consecutive single
quotes to denote one single quote character.

String constants of any length are allowed in DB directives, and
cause allocation of a sequence of bytes containing the ASCII
values of the characters in the string. In all other cases, a string
constant can be no longer than four characters, and denotes a
numeric value which can participate in an expression. The
numeric value of a string constant is calculated as

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24

where Chl is the rightmost (last) character and Ch4 is the leftmost
(first) character. If the string is shorter than four characters, the
leftmost (first) character(s) are assumed to be zero. Here are some
examples of string constants and their corresponding numeric
values:

Language Guide

Table 22.2
String examples and their

values

String

'a'
'ba'
'eba'
'deba'
'a'
, a'
'a'*2
'a'-'A'
not 'a'

Value

0OOOO061H
00006261H
00636261H
64636261H
00OO6120H
20202061H
OOOOOOE2H
00OOO020H
FFFFFF9EH

Registers The following reserved symbols denote CPU registers:

Table 22.3
CPU registers 16-bit general purpose AX BX ex DX

8-bit low registers AL BL CL DL
8-bit high registers AH BH CH DH
16-bit pointer or index 5P BP 51 DI
16-bit segment registers C5 D5 55 E5
8087 register staek ST

When an operand consists solely of a register name, it's called a
register operand. All registers can be used as register operands. In
addition, some registers can be used in other contexts.

The base registers (BX and BP) and the index registers (SI and DI)
can be written within square brackets to indicate indexing.-Valid
base/index register combinations are [BX], [BP], lSI], [DI],
[BX+SI], [BX+DI], [BP+SI], and [BP+DI].

The segment registers (ES, CS, SS, and DS) can be used in con­
junction with the colon (:) segment override operator to indicate a
different segment than the one the processor selects by default.

The symbol ST denotes the topmost register on the 8087 floating­
point register stack. Each of the eight floating-point registers can
be referred to using ST(x), where x is a constant between 0 and 7
indicating the distance from the top of the register stack.

Symbols The built-in assembler allows you to access almost all Pascal
symbols in assembler expressions, including labels, constants,
types, variables, procedures, and functions. In addition, the built­
in assembler implements the following special symbols:

@Code @Data @Result

Chapter 22, The built-in assembler 265

266

The @Code and @Data symbols represent the current code and
data segments. They should only be used in conjunction with the
SEG operator:

asm
MOV AX,SEG @Data
MOV DS,AX

end;

The @Result symbol represents the function result variable within
the statement part of a function. For example, in this function:

function Sum (X, Y: Integer): Integer;
begin

Sum := X + Y;
end;

the statement that assigns a function result value to Sum would
use the @Result variable if it was written in built-in assembler:

function Sum(X, Y: Integer): Integer;
begin

asm
MOV AX,X
ADD AX,Y
MOV @Result,AX

end;
end;

The following symbols can't be used in built-in assembler
expressions:

• Standard procedures and functions (for example, WriteLn, Chr)

• The Mem, MemW, MemL, Port, and PortW special arrays

• String, floating-point, and set constants

• Procedures and functions declared with the inline directive

• Labels that aren't declared in the current block

• The @Result symbol outside a function

Table 22.4 summarizes the value, class, and type of the different
kinds of symbols that can be used in built-in assembler
expressions. (Expression classes and types are described in a
following section.)

Language Guide

Table 22.4
Values, classes, and types of

symbols

Symbol Value Class Type

Label Address of label Memory SHORT
Constant Value of constant Immediate 0
Type 0 Memory Size of type
Field Offset of field Memory Size of type
Variable Address of variable Memory Size of type
Procedure Address of procedure Memory NEAR or FAR
Function Address of function Memory NEAR or FAR
Unit 0 Immediate 0
@Code Code segment address Memory OFFFOH
@Data Data segment address Memory OFFFOH
@Result Result var offset Memory Size of type

Local variables (variables declared in procedures and functions)
are always allocated on the stack and accessed relative to SS:BP,
and the value of a local variable symbol is its signed offset from
SS:BP. The assembler automatically adds [BP] in references to
local variables. For example, given these declarations,

procedure Test;
var

Count: Integer;

the instruction

asm
MOV AX, Count

end;

assembles into MOV AX, [BP-2l.

The built-in assembler always treats a var parameter as a 32-bit
pointer, and the size of a var parameter is always 4 (the size of a
32-bit pointer). In Pascal, the syntax for accessing a var parameter
and a value parameter is the same-this isn't the case in code you
write for the built-in assembler. Because var parameters are really
pointers, you have to treat them as such. So, to access the contents
of a var parameter, you first have to load the 32-bit pointer and
then access the location it points to. For example, if the X and Y
parameters of the above function Sum were var parameters, the
code would look like this:

function Sum(var X, Y: Integer): Integer;
begin

asm
LES
MOV
LES

BX,X
AX,ES: [BXj
BX,Y

Chapter 22, The built-in assembler 267

268

ADD AY., ES: [BX]
MOV @Result,AX

end;
end;

Some symbols, such as record types and variables, have a scope
that can be accessed using the period (.) structure member
selector operator. For example, given these declarations:

type
TPoint = record

X, Y: Integer;
end;
TRect = record

A, B: TPoint;
end;

var
P: TPoint;
R: TRect;

the following constructs can be used to access fields in the P and R
variables:

asm
MOV AY.,P.X
MOV DX,P.Y
MOV CX,R.A.X
MOV BX,R.B.Y

end;

A type identifier can be used to construct variables on the fly.
Each of the following instructions generates the same machine
code, which loads the contents of ES:[DI+4] into AX:

asm
MOV AX, (TRect PTR ES: [DI]) .B.X
MOV AX,TRect(ES: [DI]) .B.X
MOV AX,ES:TRect[DI] .B.X
MOV AY.,TRect[ES:DI] .B.X
MOV AX,ES: [DI] .TRect.B.X

end;

A scope is provided by type, field, and variable symbols of a
record or object type. In addition, a unit identifier opens the scope
of a particular unit, just like a fully qualified identifier in Pascal.

Language Guide

Expression classes
The built-in assembler divides expressions into three classes:
registers, memory references, and immediate values.

An expression that consists solely of a register name is a register
expression. Examples of register expressions are AX, CL, DI, and
ES. Used as operands, register expressions direct the assembler to
generate instructions that operate on the CPU registers.

Expressions that denote memory locations are memory refer­
ences; Pascal's labels, variables, typed constants, procedures, and
functions belong to this category.

Expressions that aren't registers and aren't associated with
memory locations are immediate values; this group includes
Pascal's untyped constants and type identifiers.

Immediate values and memory references cause different code to
be generated when used as operands. For example,

const
Start = 10;

var
Count: Integer;

asm
MOV
MOV
MOV
MOV

end;

AX, Start
BX,Count
CX, [Start]
DX,OFFSET Count

{ MOV AX,xxxx }
{ MOV BX, [xxxx]
{ MOV CX, [xxxx]
{ MOV DX,xxxx }

Because Start is an immediate value, the first MOV is assembled
into a move immediate instruction. The second MOV, however, is
translated into a move memory instruction, as Count is a memory
reference. In the third MOV, the square brackets operator is used
to convert Start into a memory reference (in this case, the word at
offset 10 in the data segment), and in the fourth MOV, the
OFFSET operator is used to convert Count into an immediate
value (the offset of Count in the data segment).

As you can see, the square brackets and the OFFSET operators
complement each other. In terms of the resulting machine code,
the following asm statement is identical to the first two lines of
the previous asm statement:

Chapter 22, The built-in assembler 269

Expression types

270

asm
MOV AX,OFFSET [Start]
MOV BX, [OFFSET Count]

end;

Memory references and immediate values are further classified as
either relocatable expressions or absolute expressions. A relocatable
expression denotes a value that requires relocation at link time,
and an absolute expression denotes a value that requires no such
relocation. Typically, an expression that refers to a label, variable,
procedure, or function is relocatable, and an expression that
operates solely on constants is absolute.

Relocation is the process by which the linker assigns absolute
addresses to symbols. At compile time, the compiler doesn't
know the final address of a label, variable, procedure, or function;
it doesn't become known until link time, when the linker assigns a
specific absolute address to the symbol.

The built-in assembler allows you to carry out any operation on
an absolute value, but it restricts operations on relocatable values
to addition and subtraction of constants.

Every built-in assembler expression has an associated type-or
more correctly, an associated size, because the built-in assembler
regards the type of an expression simply as the size of its memory
location. For example, the type (size) of an Integer variable is two,
because it occupies 2 bytes.

The built-in assembler performs type checking whenever possible,
so in the instructions

var
QuitFlag: Boolean;
OutBufPtr: Word;

asm
MOV AL,QuitFlag
MOV BX,OutBufPtr

end;

the built-in assembler checks that the size of QuitFlag is one (a
byte), and that the size of OutBufPtr is two (a word). An error
results if the type check fails. For example, this isn't allowed:

Language Guide

asm
MOV DL,OutBufPtr

end;

The problem is DL is a byte-sized register and OutBufPtr is a
word. The type of a memory reference can be changed through a
typecast; these are correct ways of writing the previous
instruction:

asm
MOV DL,BYTE PTR OutBufPtr
MOV DL, Byte (OutBufPtr)
MOV DL,OutBufPtr.Byte

end;

all of which refer to the first (least significant) byte of the
OutBufPtr variable.

In some cases, a memory reference is untyped, that is, it has no
associated type. One example is an immediate value enclosed in
square brackets:

asm
MOV AL, [IOOR]
MOV BX, [IOOR]

end;

The built-in assembler permits both of these instructions, because
the expression [100H] has nq associated type-it just means "the
contents of address 100H in the data segment," and the type can
be determined from the first operand (byte for AL, word for BX).
In cases where the type can't be determined from another
operand, the built-in assembler requires an explicit typecast:

asm
INC BYTE PTR [IOOR]
IMUL WORD PTR [IOOR]

end;

Table 22.5 summarizes the predefined type symbols that the
built-in assembler provides in addition to any currently declared
Pascal types.

Chapter 22, The built-in assembler 271

Table 22.5
Predefined type symbols

Expression
operators

Table 22.6
Summary of built-in

asssembler expression
operators

Built-in assembler operator
precedence is different from

Pascal. For example, in a
built-in assembler expression,
the AND operator has lower

precedence than the plus
(+) and minus (-) operators,

whereas in a Pascal
expression, it has higher

precedence.

272

Symbol

BYTE
WORD
DWORD
aWORD
TBYTE
NEAR
FAR

Type

1
2
4
8
10
OFFFEH
OFFFFH

Notice in particular the NEAR and FAR pseudotypes, which are
used by procedure and function symbols to indicate their call
model. You can use NEAR and FAR in typecasts just like other
symbols. For example, if FarProc is a FAR procedure,

procedure FarProc; far;

and if you are writing built-in assembler code in the same module
as FarProc, you can use the more efficient NEAR call instruction to
call it:

asm
PUSH CS
CALL NEAR PTR FarProc

end;

The built-in assembler provides a variety of operators, divided
into 12 classes of precedence. Table 22.6 lists the built-in
assembler's expression operators in decreasing order of
precedence.

Operator(s)

&

0, [], •
HIGH, LOW

+,-

OFFSE~SEG,TYPE,PTR,
*, I, MOD, SHL, SHR

+,-

NOT, AND, OR, XOR

Comments

Identifier override operator

Structure member selector

Unary operators

Segment override operator

Binary addition/ subtraction
operators

Bitwise operators

Language Guide

Table 22.7: Definitions of built-in assembler expression operators

Operator

&

(...)

[...]

HIGH

LOW

+

OFFSET

SEG

TYPE

PTR

*

Description

Identifier override. The identifier immediately following the ampersand is treated as a
user-defined symbol, even if the spelling is the same as a built-in assembler reserved
symbol.

Subexpression. Expressions within parentheses are evaluated completely prior to being
treated as a single expression element. Another expression can optionally precede the
expression within the parentheses; the result in this case becomes the sum of the values of
the two expressions, with the type of the first expression.

Memory reference. The expression within brackets is evaluated completely prior to being
treated as a single expression element. The expression within brackets can be combined
with the BX, BP, sr, or Dr registers using the plus (+) operator, to indicate CPU register
indexing. Another expression can optionally precede the expression within the brackets; the.
result in this case becomes the sum of the values of the two expressions, with the type of the
first expression. The result is always a memory reference.

Structure member selector. The result is the sum of the expression before the period and
the expression after the period, with the type of the expression after the period. Symbols
belonging to the scope identified by the expression before the period can be accessed in the
expression after the period.

Returns the high-order 8 bits of the word-sized expression following the operator. The
expression must be an absolute immediate value.

Returns the low-order 8 bits of the word-sized expression following the operator. The
expression must be an absolute immediate value.

Unary plus. Returns the expression following the plus with no changes. The expression
must be an absolute immediate value.

Unary minus. Returns the negated value of the expression following the minus. The
expression must be an absolute immediate value.

Segment override. Instructs the assembler that the expression after the colon belongs to the
segment given by the segment register name (CS, DS, SS, or ES) before the colon. The result
is a memory reference with the value of the expression after the colon. When a segment
override is used in an instruction operand, the instruction will be prefixed by an
appropriate segment override prefix instruction to ensure that the indicated segment is
selected.

Returns the offset part (low-order word) of the expression following the operator. The result
is an immediate value.

Returns the segment part (high-order word) of the expression following the operator. The
result is an immediate value.

Returns the type (size in bytes) of the expression following the operator. The type of an
immediate value is O. '

Typecast operator. The result is a memory reference with the value of the expression
following the operator and the type of the expression in front of the operator.

Multiplication. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

Chapter 22, The built-in assembler 273

Table 22.7: Definitions of built-in assembler expression operators (continued)

Integer division. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

MOD Remainder after integer division. Both expressions must be absolute immediate values, and
the result is an absolute immediate value.

SHL Logical shift left. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

SHR Logical shift right. Both expressions must be absolute immediate values, and the result is
an absolute immediate value.

+ Addition. The expressions can be immediate values or memory references, but only one of
the expressions can be a relocatable value. If one of the expressions is a relocatable value,
the result is also a relocatable value. If either of the expressions are memory references, the
result is also a memory reference.

Subtraction. The first expression can have any class, but the second expression must be an
absolute immediate value. The result has the same class as the first expression.

NOT Bitwise negation. The expression must be an absolute immediate value, and the result is an
absolute immediate value.

AND Bitwise AND. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

OR Bitwise OR. Both expressions must be absolute immediate values, and the result is an
absolute immediate value.

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values, and the result
is an absolute immediate value.

Assembler procedures and functions

274

So far, every asm ... end construct you've seen has been a
statement within a normal begin ... end statement part. Turbo
Pascal's assembler directive allows you to write complete
procedures and functions in built-in assembler, without the need
for a begin ... end statement part. Here's an example of an
assembler function:

function LongMul(X, Y: Integer): Longint; assembler;
asm

MOV AX,X
IMUL Y

end;

The assembler directive causes Turbo Pascal to perform a number
of code generation optimizations:

Language Guide

• The compiler doesn't generate code to copy value parameters
into local variables. This affects all string-type value param­
eters, and other value parameters whose size isn't I, 2, or 4
bytes. Within the procedure or function, such parameters must
be treated as if they were var parameters.

• The compiler doesn't allocate a function result variable, and a
reference to the @Result symbol is an error. String functions,
however, are an exception to this rule-they always have a
@Result pointer that is allocated by the caller.

• The compiler generates no stack frame for procedures and
functions that aren't nested and have no parameters and no
local variables.

• The automatically generated entry and exit code for an
assembler procedure or function looks like this:

PUSH BP jPresent if Locals <> a or Params <> 0
MOV BP,SP jPresent if Locals <> a or Params <> 0
SUB SP,Locals jPresent if Locals <> a

MOV SP,BP jPresent if Locals <> a
POP BP jPresent if Locals <> a or Params <> a
RET Params jAlways present

• Locals is the size of the local variables, and Params is the size of
the parameters. If both Locals and Params are zero, there is no
entry code, and the exit code consists simply of a RET
instruction.

Functions using the assembler directive must return their results
as follows:

• Ordinal-type function results (integer, boolean, enumerated
types, and Char) are returned in AL (8-bit values), AX (16-bit
values), or DX:AX (32-bit values).

• Real-type function results (type Real) are returned in DX:BX:AX.

• 8087-type function results (type Single, Double, Extended, and
Comp) are returned in ST(O) on the 8087 coprocessor's register
stack.

• Pointer-type function results are returned in DX:AX.

• String-type function results are returned in the temporary
location pointed to by the @Result function result symbol.

The assembler directive is in many ways comparable to the
external directive, and assembler procedures and functions must
obey the same rules as external procedures and functions. The

Chapter 22, The built-in assembler 275

276

following examples demonstrate some of the differences between
asm statements in ordinary functions and assembler functions.
The first example uses an asm statement in an ordinary function
to convert a string to upper case. Notice that the value parameter
Str in this case refers to a local variable, because the compiler
automatically generates entry code that copies the actual
parameter into local storage.

function UpperCase (Str: String): String;
begin

asm
CLD
LEA SI,Str
LES DI,@Result
SEGSS LODSB
STOSB
XOR AH,AH
XCHG AX,CX
JCXZ @3

@l:
SEGSS LODSB
CMP AL,'a'
JB @2
CMP AL, 'z'
JA @2
SUB AL,20H

@2:
STOSB
LOOP @1

@3:
end;

end;

The second example is an assembler version of the UpperCase
function. In this case, Str isn't copied into local storage, and the
function must treat Str as a var parameter.

function UpperCase (Str: String) : String; assembler;
asm

PUSH DS
CLD
LDS SI,Str
LES DI,@Result
LODSB
STOSB
XOR AH,AH
XCHG AX,CX
JCXZ @3

Language Guide

@1:
LODSB
CMP AL,'a'
JB @2
CMP AL,' z'
JA @2
SUB AL,20H

@2 :
STOSB
LOOP @1

@3:
POP DS

end;

Chapter 22, The built-in assembler 277

278 Language Guide

c H A p T E R

23

Linking assembler code

Procedures and functions written in assembly language can be
linked with Turbo Pascal programs or units using the $L compiler
directive. The assembly language source file must be assembled
into an object file (extension .OBJ) using an assembler like Turbo
Assembler. Multiple object files can be linked with a program or
unit through multiple $L directives.

Procedures and functions written in assembly language must be
declared as external in the Pascal program or unit. For example,

function LoCase(Ch: Char): Char; external;

In the corresponding assembly language source file, all
procedures and functions must be placed in a segment named
CODE or CSEG, or in a segment whose name ends in _TEXT. The
names of the external procedures and functions must appear in
PUBLIC directives.

You must ensure that an assembly language procedure or
function matches its Pascal definition with respect to call model
(near or far), number of parameters, types of parameters, and
result type.

An assembly language source file can declare initialized variables
in a segment named CaNST or in a segment whose name ends in
_DATA. It can declare uninitialized variables in a segment named
DATA or DSEG, or in a segment whose name ends in _BSS. Such
variables are private to the assembly language source file and
can't be referenced from the Pascal program or unit. However,

Chapter 23, Linking assembler code 279

they reside in the same segment as the Pascal globals, and can be
accessed through the DS segment register.

All procedures, functions, and variables declared in the Pascal
program or unit, and the ones declared in the interface section of
the used units, can be referenced from the assembly language
source file through EXTRN directives. Again, it's up to you to
supply the correct type in the EXTRN definition.

When an object file appears in a $L directive, Turbo Pascal
converts the file from the Intel relocatable object module format
(.OBJ) to its own internal relocatable format. This conversion is
possible only if certain rules are observed:

• All procedures and functions must be placed in a segment
named CODE or CSEG, or in a segment with a name that ends
in _TEXT. All initialized private variables must be placed in a
segment named CONST, or in a segment with a name that ends
in _DATA. All uninitialized private variables must be placed in
a segment named DATA or DSEG, or in a segment with a name
that ends in _BSS. All other segments are ignored, and so are
GROUP directives. The segment definitions can specify BYTE
or WORD alignment, but when linked, code segments are
always byte aligned, and data segments are always word
aligned. The segment definitions can optionally specify PUBLIC
and a class name, both of which are ignored.

• Turbo Pascal ignores any data for segments other than the code
segment (CODE, CSEG, or xxxx_TEXT) and the initialized data
segment (CaNST or xxxx_DATA). So, when declaring variables
in the uninitialized data segment (DATA, DSEG, or xxxx_BSS),
always use a question mark (?) to specify the value, for
instance:

Count DW ?
Buffer DB 128 DUP(?)

• Byte-sized references to EXTRN symbols aren't allowed. For
example, this means that the assembly language HIGH and
LOW operators can't be used with EXTRN symbols.

Turbo Assembler and Turbo Pascal

280

Turbo Assembler (TASM) makes it easy to program routines in
assembly language and interface them into your Turbo Pascal

Language Guide

programs. Turbo Assembler provides simplified segmentation
and language support for Pascal programmers.

The .MODEL directive specifies the memory model for an
assembler module that uses simplified segmentation. For linking
with Pascal programs, the .MODEL syntax looks like this:

.MODEL XXXX, PASCAL

xxxx is the memory model (usually this is large).

Specifying the language PASCAL in the .MODEL directive tells
Turbo Assembler that the arguments were pushed onto the stack
from left to right, in the order they were encountered in the
source statement that called the procedure.

The PROC directive lets you define your parameters in the same
order as they are defined in your Pascal program. If you are
defining a function that returns a string, notice that the PROC
directive has a RETURNS option that lets you access the tempo­
rary string pointer on the stack without affecting the number of
parameter bytes added to the RET statement.

Here's an example coded to use the .MODEL and PROC
directives:

.MODEL LARGE, PASCAL

. CODE
MyProc PROC FAR I : BYTE, J : BYTE RETURNS Result : DWORD

PUBLIC MyProc
LES DI, Result
MOV AL, I
MOV BL, J

RET

iget address of temporary string
iget first parameter I
iget second parameter J

The Pascal function definition would look like this:

function MyProc(I, J: Char): stringi externali

For more information about interfacing Turbo Assembler with
Turbo ,Pascal, refer to the Turbo Assembler User's Guide.

Examples of assembly language routines

The following code is an example of a unit that implements two
assembly language string-handling routines. The UpperCase
function converts all characters in a string to uppercase, and the

Chapter 23, Linking assembler code 281

282

StringOf function returns a string of characters of a specified
length.

unit Stringeri
interface
function UpperCase(S: String): Stringi
function StringOf(Ch: Chari Count: Byte): Stringi
implementation
{$L STRS}
function UpperCasei externali
function StringOfi externali
end.

The assembly language file that implements the UpperCase and
StringOf routines is shown next. It must be assembled into a file
called STRS.OBJ before the Stringer unit can be compiled. Note
that the routines use the far call model because they are declared
in the interface section of the unit. This example uses standard
segmenta tion:

CODE SEGMENT BYTE PUBLIC

ASSUME CS:CODE
PUBLIC UpperCase, StringOf iMake them known

function UpperCase(S: String): String

UpperRes EQU DWORD PTR [BP + 10]
UpperStr EQU DWORD PTR [BP + 6]

UpperCase PROC FAR

PUSH BP iSave BP
MOV BP, SP iSet up stack frame
PUSH DS iSave DS
LDS SI, Upperstr iLoad string address
LES DI, Upperres iLoad result address
CLD iForward string-ops
LODSB iLoad string length
STOSB iCOPY to result
MOV CL, AL iString length to CX
XOR CH, CH
JCXZ U3 iSkip if empty string

U1: LODSB iLoad character
CMP AL, 'a' i8kip if not 'a' .. 'z'
JB U2
CMP AL, , z'
JA U2
SUB AL, 'a'-'A' iConvert to uppercase

U2: STOSB iStore in result
LOOP U1 iLoop for all characters

Language Guide

U3: POP
POP
RET

DS
BP
4

UpperCase ENDP

jRestore DS
jRestore BP
jRemove parameter and return

j procedure StringOf(var S: Stringi Ch: Chari Count: Byte}

StrOfS EQU DWORD PTR [BP + 10]
StrOfChar EQU BYTE PTR [BP + 8]
StrOfCount EQU BYTE PTR [BP + 6]

StringOf PROC FAR

PUSH BP jSave BP
MOV BP, SP jSet up stack frame
LES DI, StrOfRes jLoad result address
MOV AL, StrOfCount iLoad count
CLD jForward string-ops
STOSB jStore length
MOV CL, AL jCount to CX
XOR CH, CH
MOV AL, StrOfChar iLoad character
REP STOSB jStore string of characters
POP BP jRestore BP
RET 8 jRemove parameters and return

StringOf ENDP

CODE ENDS

END

To assemble the example and compile the unit, use the following
commands:

TASM STR5
TPCW stringer

Assembly language methods

Method implementations written in assembly language can be
linked with Turbo Pascal programs using the $L compiler
directive and the external reserved word. The declaration of an
external method in an object type is no different than that of a
normal method; however, the implementation of the method lists
only the method header followed by the reserved word external.
In an assembly language source text, an @ is used instead of a
period (.) to write qualified identifiers (the period already has a
different meaning in assembly language and can't be part of an

Chapter 23, Linking assembler code 283

identifier). For example, the Pascal identifier Rect.lnit is written as
Rect@Init in assembly language. The @ syntax can be used to
declare both PUBLIC and EXTRN identifiers.

Inline machine code

Inline statements

284

For very short assembly language subroutines, Turbo Pascal's
inline statements and directives are very convenient. They let you
insert machine code instructions directly into the program or unit
text instead of through an object file.

An inline statement consists of the reserved word inline followed
by one or more inline elements, separated by slashes and enclosed
in parentheses:

inline(lO/$2345/Count + l/Data - Offset);

Here's the syntax of an inline statement:

inline statement ~I in line element TeD--
1----~01+-, -------'

Each inline element consists of an optional size specifier, < or >,
and a constant or a variable identifier, followed by zero or more
offset specifiers (see the syntax that follows). An offset specifier
consists of a + or a - followed by a constant.

inline element

Each inline element generates 1 byte or 1 word of code. The value
is computed from the value of the first constant or the offset of the
variable identifier, to which is added or subtracted the value of
each of the constants that follow it.

An Wine element generates 1 byte of code if it consists of con­
stants only and 'if its value is within the 8-bit range (0 .. 255). If the

Language Guide

Registers BP, SP, SS, and OS
must be preserved by inline

statements: all other registers
can be modified.

Inline directives

value is outside the 8-bit range or if the inline element refers to a
variable, 1 word of code is generated (least-significant byte first).

The < and> operators can be used to override the automatic size
selection we described earlier. If an inline element starts with a <
operator, only the least-significant byte of the value is coded, even
if it's a 16-bit value. If an inline element starts with a > operator, a
word is always coded, even though the most-significant byte is O.
For example, the statement

inline«$1234/>$44) ;

generates 3 bytes of code: $34, $44, $00.

The value of a variable identifier in an inline element is the offset
address of the variable within its base segment. The base segment
of global variables-variables declared at the outermost level in a
program or a unit-and typed constants is the data segment,
which is accessible through the DS register. The base segment of
local variables-variables declared within the current subpro­
gram-is the stack segment. In this case the variable offset is
relative to the BP register, which automatically causes the stack
segment to be selected.

The following example of an inline statement generates machine
code for storing a specified number of words of data in a specified
variable. When called, procedure FillWord stores Count words of
the value Data in memory, starting at the first byte occupied by
Dest.

procedure FillWord(var Dest; Count, Data: Word);
begin

inline (

end;

$C4/$BE/Dest/
$8B/$8E/Count!
$8B/$86/Data/
$FC/
$F3/$AB);

{ LES DI,Dest[BP] }
{ MOV CX,Count[BP] }
{ MOV AX,Data[BP] }
{ CLD }
{ REP STOSW }

Inline statements can be freely mixed with other statements
throughout the statement part of a block.

With inline directives, you can write procedures and functions
that expand into a given sequence of machine code instructions
whenever they are called. These are comparable to macros in

Chapter 23, Linking assembler code 285

286

assembly language. The syntax for an inline directive is the same
as that of an inline statement:

inline directive -l inline statement ~

When a normal procedure or function is called (including one that
contains inline statements), the compiler generates code that
pushes the parameters (if any) onto the stack, and then generates
a CALL instruction to call the procedure or function. However,
when you call an inline procedure or function, the compiler
generates code from the inline directive instead of the CALL.
Here's a short example of two inline procedures:

procedure Disablelnterruptsi inline($FA)i
procedure Enablelnterruptsi inline($FB)i

{ eLI }
{ STI }

When Disablelnterrupts is called, it generates 1 byte of code-a CLI
instruction.

Procedures and functions declared with inline directives can have
parameters; however, the parameters can't be referred to symboli­
cally in the inline directive (other variables can, though). Also,
because such procedures and functions are in fact macros, there is
no automatic entry and exit code, nor should there be any return
instruction.

The following function multiplies two Integer values, producing a
Longint result:

function LongMul(X, Y: Integer): Longinti
inline (

$5A/
$58/
$F7/$EA) i

POP AX iPOP X }
POP DX iPOP Y }
lMUL DX iDX : AX = X * Y }

Note the lack of entry and exit code and the missing return
instruction. These aren't required, because the 4 bytes are inserted
into the instruction stream when LongMul is called.

Use inline directives for very short procedures and functions only
(less than 10 bytes).

Because of the macro-like nature of inline procedures and func­
tions, they can't be used as arguments to the @ operator and the
Addr, Ofs, and Seg functions.

Language Guide

N

80486 processor 149
87 environment variable 155
@@ operator 79
A (pointer) symbol 43, 56
(pound) character 19
@operator 75

with a variable 75
with procedures and functions 75

80x87
emulation 29
floating point model 28
numeric coprocessor 149-157
software emulation, selecting 28

A
$A compiler directive 249
Abs function 130, 245
absolute

clause syntax 53
expressions, built-in assembler 270
variables 53

actual parameters 82
Addr function 132
address

factor 66
functions 132

address-of (@) operator 43,56, 75, 79
alignment, data 249
ancestor of an object type 34
ancestors 34
and operator 70, 180
AnyFile constant 162
apostrophes in character strings 19
Append procedure 135, 137, 147
Arc procedure 185
Archive constant 162
ArcTan function 130

Index

D

arithmetic
functions 130

E

operations precison rules 25
operators 68

array
types 30, 222
variables 55

array-type constant syntax 60
arrays 30, 55

accessing elements in 31
indexing multidimensional 55
number of elements in 30
of arrays 31
valid index types in 30
zero-based character 31, 61, 169, 171

defined 31
.ASM files 157
asm statement 256
assembler

code
in Turbo Pascal 255
linked with Turbo Pascal 279

declaration syntax 101
assembly language

80x87 emulation and 157
call model 279
inline

directives 285
statements 284

interfacing programs with 280
linking with Turbo Pascal 279-286
overlays and 203
statements

multiple 256
syntax 256-261

Assign procedure 135, 136, 146
Assignert procedure 144, 146
Assigned function 132

x

287

assignment
compatibility 40, 48

object type 82
statement syntax 82

automatic
call model selection, overriding 236
jump sizing, built-in assembler 258
word alignment 249

AX register 235, 286

B
$B compiler directive 71, 246
bar constants 188
Bar3D procedure 175, 185
Bar procedure 185
base type 43
.BGlfiles 175
binary

arithmetic operators 68
operands 65
operators 25

BIOS 142
bit images 179
BitBlt

operations 180
operators 188

bitmapped fonts 178
bitwise operators 69
blanks, defined 15
block

defined 93
scope 95
subroutine 98
syntax 93

BlockRead procedure 135
BlockWrite procedure 135
Boolean

data type 25, 218
expression evaluation 246

complete 70
short-circuit 70

operators 70
boolean

data types 25
operators 26
types 218
variables 26

288

Borland Graphics Interface 175-189
BP register 203, 241, 243
brackets, in expressions 76, 77
Break procedure 87, 130
BufEnd variable 230
buffer

overlay 193
loading and freeing up 194
optimization algorithm 194
probationary area 195

text, size 230
BufPtr pointer 230
BufSize variable 230
built-in assembler

directives 255
expressions 262-274

classes 269-270
operators 272-274
Pascal expressions versus 262
types 270-272

instruction sizing 258-259
opcodes 257-259
operands 261
procedures and functions 274
registers, using 256
reserved words 261

BX register 235, 243
Byte data type 25
ByteBool data type 25, 218

C
call model 279
calling conventions 233

constructors and destructors 240
methods 238

calls, near and far 236
case

sensitivity of Turbo Pascal 16
statement syntax 85

CGA 175
Char data type 26, 218
character

arrays 171
pair special symbols 16
pointer operators 71
pointers

characters arrays and 171

Language Guide

indexing 171
string literals and 169

strings 20
ChDir procedure 135
CheckBreak variable 145
CheckEOF variable 145
CheckSnow variable 145
.CHR files 175
Chr function 26, 130, 245
Circle procedure 185
circular unit references 121
Clear Device procedure 185
ClearViewPort procedure 185
clipping constants 188
Close procedure 135, 146, 148
CloseGraph procedure 176, 185
ClrEol procedure 144
ClrScr procedure 144
code segment 280

procedures and functions in 279
color constants 188

text 145
colors, maximum number of 189
command-line parameters 133
comments 20

built-in assembler 256
common types of integer types 25
communication devices (COMI and COM2)

141
Comp data type 28, 151,221
comparing

character pointers 74
packed strings 74
pointers 74
sets 74
simple types 73
strings 74
values of real types 153

compatibility
assignment 40
parameter type 110

compiler
directives

$N29
$P 111
$A249
$B 71,246

Index

defined 20
$F 46, 99, 146, 198, 236
$G257
$1 137
$L 279, 280, 283
$L filename 100, 157
$M 52,211
$N 29, 69, 130, 150, 155, 257
$0 197

nonoverlay units and 202
$R 39, 224
$S52
$T 48,75
$X 20,31,43,54, 71

optimization of code 245-251
complete Boolean evaluation 70
compound statement syntax 84
Concatfunction 131
concatenation 71
conditional statement syntax 84
console device (CON) 140
CONST segment 279
constant

address expressions 59
declaration part syntax 94
declarations 21
defined 11
expressions 21
parameters 109
with an initial value 11

constants 21
array-type 60
Dos unit 162
folding 245
Graph unit 188
merging 246
numeric, built-in assembler 263
object-type 62
pointer-type 63
procedural-type 64
record-type 62
set-type 63
simple-type 59
string, built-in assembler 264
string-type 60
structured-type 60
typed 58

289

WinDos unit 165
constructor syntax 104
constructors 37, 38, 222, 225

calling conventions 240
declaring 103
defined 104
error recovery 106
virtual methods and 104

Continue procedure 87, 130
control

characters
defined 15
embedding in strings 19
in Crt unit 143

string syntax diagram 20
control characters 19
Copy function 131
Cos function 130
CreateDir procedure 165
creating objects 38
Crt

mode constants 145
unit 128, 142

control characters in 143
editing keys in 143
variables in 145

CS register 243
CSeg function 132
CSEG segment 280
current pointer 178
CX register 243

D
data

alignment 249
internal formats 218-230
ports 231
segment 279, 280

maximum size of 52
data formats 218-230
date and time procedures

Dos unit 160
WinDos unit 163

DateTime type 163
dead code eliminated 250
debugging overlays 202
Dec procedure 131

290

declaration part, defined 11
declaring

an object type 36
methods 37

Delay procedure 144
Delete procedure 131
DelLine procedure 144
descendants 34

of an object type 34
designators

field 56
method 56

destructor syntax 105
destructors 104

calling conventions 240
declaring 103
defined 104

DetectGraph procedure 185
devices 140-141

communication (COMl and COM2) 141
console (CON) 140
DOS 140
drivers 146
handlers 243, 244
line printer (LPT1, LPT2, LPT3) 141
NUL 141
text file 141

DI register 243
diagrams, syntax 14
digit syntax diagram 15
digits, defined 15
direct

memory access 230
port access 231

directives
assembler, defined 259
built-in assembler 255, 274, 275
external 100
far 98
forward 99
inline 101
interrupt 99
list of Turbo Pascal 17
near 98
private 17
public 17
standard 17

Language Guide

Directory constant 162
directory-handling procedures and functions

165
DirectVideo variable 145
disk status functions

Dos unit 161
WinDos unit 164

DiskFree function 161, 164
DiskSize function 161, 164
dispatcher, RTL (run-time library) 239
Dispose procedure 132,212,213,215

extended syntax 224, 240
constructor passed as parameter 104, 114

disposU::tg of dynamic variables 212
div operator 69
DMT (dynamic method table)

cache 228, 239
entry count 228

domain of object type 34
DOS

device handling 244
devices 140
environment 209
error level 242
exit code 241
operating system routines 159

Dos unit 127, 159-163
types 163

DosError variable 163, 166
Dos Version function 162, 165
double address-of (@@) operator 79
Double data type 28, 151,220
DrawPoly procedure 185
driver constants 188
drivers, graphics 175-177
DS register 241, 243
DS segment 280
DSeg function 132
DX register 235, 243
dynamic

allocation procedures and functions 132
method calls 239
method index 38
method table 225

cache 228
entry count 228

methods 38, 226

Index

E

how differ from virtual methods 38
overriding 38

object instances
allocation and disposal of 104, 240

variables 43, 52, 56,211
disposing of 212

$E compiler directive 28
editing keys in Crt unit 143
eliminate dead code 250
Ellipse procedure 185
embedding control characters in strings 19
empty set 42
EMS memory, overlay files and 192, 198
emulating the 80x87 29
end-of-file character 140, 143
end-of-line character 15
entry code 240, 275
enumerated

constant's ordinality 27
types 26, 219

EnvCount function 161
environment-handling functions

Dos unit 161
WinDos unit 165

EnvStr function 161
Eof function 135
Eoln function 135
Erase procedure 135
error checking

dynamic object allocation 106
virtual method calls 224

ErrorAddr variable 133, 242
errors

fatal, in OvrInit 200
handling 180
reporting 241

ES register 243
examples

array type 31
avoiding ambiguity using subrange types 28
character strings 19
constant expressions 21, 22
constructor 38
control characters in strings 19
enumerated type 27

291

expressions 9
function 6
initializing virtual methods 38
Mem arrays 230
object-type declaration 34
record type 32
simple statements 8
subrange type 27
syntax diagram 14
tokens 10
variables 11
variant part of a record 33

Exclude procedure 133
.EXE files 191

building 250
Exec procedure 161
exit

code 241, 275
functions 240
procedures 240, 241

Exit procedure 130
ExitCode variable 133, 242
exiting a program 241
ExitProc variable 241
Exp function 130
exponents 219
expression syntax 66-68
expressions 65-79

absolute, built-in assembler 270
built-in assembler 262-274

classes 269-270
elements of 263-268
versus Pascal 262

constant 21
address 59
standard functions permitted in 22

defined 9
elements of, built-in assembler 263
order of evaluation 246
relocation, built-in assembler 270
types, built-in assembler 270

Extended data type 28, 151, 152,220
range arithmetic 152
range of 150

extended syntax 20,31,43
external

(reserved word) 283

292

declarations 100
directive 100, 275
procedures and functions 157, 279

ExternProc 203
EXTRN directive 280

F
$F compiler directive 46, 99, 146, 198, 236
faAnyFile constant 166
faArchive constant 166
factor syntax 66
faDirectory constant 166
faHidden constant 166
Fail procedure 107
False predefined constant identifer 26
far

ca11236
model 197

forcing use of 241
requirement 193

directive 98
faReadOnly constant 166
faSysFile constant 166
FAuxiliary constant 162
fAuxiliary constant 166
fa VolumeID constant 166
FCarry constant 162
fCarry constant 166
fcDirectory constant 166
fcExtension constant 166
fcFileName constant 166
fcWildcards constant 166
FExpand function 161
Fibonacci numbers 154
fields

designators syntax 56
in record types 32
list (of records) 32
object 33

scope 103
record 55

figures, graphics 179
file See also files

buffer 230
handles 229
input and output 136-139
modes 229

Language Guide

types 42, 228
file-handling procedures and functions

Dos unit 161
WinDos unit 164

FileExpand function 164
FileMode variable 133, 139
FilePos function 135
FileRec

record 229
type 163

files
access, read-only 139
.ASM 157
.BGI 175
.CHR 175
.EXE 191

building 250
functions for 135
I/O 142
.OBJ 279
.OVR 191
procedures for 135
text 137

layout 229
typed 228
types of 228
untyped 139,228

FileSearch function 164
FileSize function 135
FileSplit function 164

source code of 173
fill pattern constants 188
FillChar procedure 133
FillEllipse procedure 185
FillPoly procedure 179, 185
FindFirst procedure 161, 164
finding the size of a given string 29
FindNext procedure 161, 164
fixed part of records 32
floating-point

calculations, type Real and 151
code generation, switching 150
numbers 28, 149
numeric coprocessor (80x87) 29
parameters 234
software 29

Index

types
Comp221
Double 220
Extended 220
Singe 220

FloodFill procedure 179, 185
flow-control procedures 130
Flush procedure 135
fmClosed constant 162, 166, 229
fmInOut constant 162, 166,229
fmInput constant 162, 166, 229
fmOutput constant 162, 166,229
font constants 188
fonts

files 183
stroked 175, 178

for statement syntax 88
Force Far Calls option 198
formal

parameter list syntax 108
parameters 76, 82, 107

forward
declarations 99
directive 99

FOverflow constant 162
fOverflow constant 166
FParity constant 162
£Parity constant 166
Frac function 130
free list 215
FreeList variable 133
FreeMem procedure 132,212,213,215
FreeZero variable 133
fsDirectory constant 166
FSearch function 161
fsExtension constant 166
fsFileName constant 166
FSign constant 162
fSign constant 166
fsPathName constant 166
FSplit function 161
function

calls 76
, extended syntax and 76

syntax 76
declarations 101-103

assembler 100

293

external 100
headings 102
results 235
returns, built-in assembler 275
syntax 101

functions 6, 97, See also procedures and
functions
address 132
arithmetic 130
calls 233
directory-handling 165
disk status

Dos unit 161
WinDos unit 164

entry / exit code, built-in assembler 275
environment-handling

Dos unit 161
WinDos unit 165

far 236
file-handling

Dos unit 161
WinDos unit 164

graphics 185
heap-error 106
High 112
Low 112
miscellaneous

Dos unit 162
WinDos unit 165

near 236
nested 236
ordinal 131
OvrGetRetry 195
parameters, built-in assembler 274
pointer 132
private 119
program example 6
SizeOf 112
stack frame for, built-in assembler 275
standard 129

and constant expressions 22
string 131
transfer 130

FZero constant 162
fZero constant 166

294

G
$G compiler directive 257
GetArcCoords procedure 185
GetArgCount function 165
GetArgStr function 165
GetAspectRatio procedure 185
GetBkColor function 185
GetCBreak procedure 162, 165
GetColor function 185
GetCurDir function 165
GetDate procedure 160, 163
GetDefaultPalette function 186, 189
GetDir procedure 135
GetDriverName function 186
GetEnv function 161
GetEnvVar function 165
GetFAttr procedure 161, 164
GetFillPattern procedure 186
GetFillSettings procedure 186
GetFTime procedure 160, 163
GetGraphMode function 186
GetImage procedure 175, 186
GetIntVec procedure 160, 164
GetLineSettings procedure 186
GetMaxColor function 186
GetMaxMode function 186
GetMaxX function 186
GetMax Y function 186
GetMem procedure 56, 132,217
GetModeN arne function 186
GetModeRange procedure 186
GetPalette procedure 186, 189
GetPaletteSize function 186
GetPixel function 180, 186
GetTextSettings procedure 179, 186
GetTime procedure 160, 163
GetVerify procedure 162, 165
GetViewSettings procedure 186
GetX function 186
Get Y function 186
goto statement syntax 83
GotoXYprocedure 144
Graph3 unit 128
Graph unit 128, 175, 199

bit images in 179
colors 180
constants 188

Language Guide

error handling 180
figures and styles in 179
heap management routines 183
paging 180
procedures 185
sample program 181, 182
text in 178
types 189
variables 189
viewports in 179

GraphDefaults procedure 186
GraphDriver variable, IBM 8514 and 176
GraphErrorMsg function 186
GraphFreeMem procedure 183
GraphFreeMemPtr variable 189
GraphGetMem procedure 183
GraphGetMemPtr variable 189
graphics

Close Graph 176
current pointer in 178
drivers 175
figures and styles 179
InitGraph in 176
mode constants 188
sample program 181, 182
using 175-189

GraphResult errors 188
GraphResult function 180, 186
grXXXX constants 188

H
Halt procedure 130,241
handles, file 229
hardware, interrupts 243
heading, program 5
heap

error function 106, 217
management

allocating 211, 212, 215, 217
deallocating 212
fragmenting 211
free list 215
map 210
routines 183

manager 211-218
managing 211-218

HeapEnd variable 133

Index

HeapError variable 133,217
HeapOrg variable 133,211,212
HeapPtr variable 133,211
hex digits 15
hexadecimal

constants 18
numbers 19

Hi function 133, 245
Hidden constant 162
high

bounds of index type of an array, finding 31
resolution graphics 176

High function 24,31, 112, 131
highest value in a range, finding 24
HighVideo procedure 144
host type 27

$1 compiler directive 137
I/O

devices 146
error-checking 137
files 142
redirection 142

IBM 8514 175
driver support 176-177
GraphDriver variable and 176
InitGraph procedure and 176
modes 176
SetRGBPalette and 177

identifiers
as labels 19
defined 17
examples 18
how identified in manuals 18
length of 17
qualified 17
restrictions on naming 17
scope of 23

if statement syntax 84
ImageSize function 186
immediate values, built-in assembler 269
implementation part of a unit 119, 236
implementing methods 37
in operator 73, 75
Inc procedure 131
Include procedure 133

295

index
dynamic method 38
syntax 55
types valid in arrays 30

indexes in arrays 31
indexing character pointers 171
indirect unit references 120
infinite loop See loop, infinite
inheritance, rules of 33
inherited (reserved word) 41
InitGraph procedure 176, 186
initialization part of a unit 120
initialized variables 58

in assembler 279
initializing virtual methods 37, 38
inline

directives 101,285
statements 284

InOutRes variable 133
input and output

file 136-139
with Crt unit 142-145

Input variable 133
Insert procedure 131
InsLine procedure 144
InstallUserDriver function 186
InstallUserFont function 186
instances

dynamic object 39
of an object type 38

instantiating objects 38
instruction opcodes, built-in assembler 257
Int function 130
Integer data type 25, 218
integer types 25
interface part of a unit 119, 236
internal data formats 218-230
interrupt

directive 243
directives 99
handlers 243

units and 202
handling routines 243
procedures, writing 243
service routines (ISRs) 243
support procedures

Dos unit 160

296

WinDos unit 164
Intr procedure 160, 164
IOResult function 135
IP flag 243
ISRs (interrupt service routines) 243

J
jump sizing, automatic, built-in assembler 258
justify text constants 188

K
Keep procedure 161
keyboard status, testing 144
KeyPressed function 144

L
$L compiler directive 279, 280, 283
$L filename compiler directive 1 ~O, 157
label

declaration part syntax 93
syntax 19

labels
built-in assembler 257
defined 19

language overview 5
LastMode variable 145
l~te binding 37
left

brace special symbol 16
bracket special symbol 16

length
character strings 20
identifiers 17
program lines 20
record 230
string-type value, finding 29

Length function 131,245
letters, defined 15
line

input editing keys 143
printer devices (LPTl, LPT2, LPT3) 141
style constants 188

Line procedure 186
LineRel procedure 186
lines, maxiumum length of 20
LineTo procedure 186

Language Guide

linking
smart 250
Turbo Pascal with assembler code 279-286

Ln function 130
Lo function 133, 245
local labels 257
logical operators 69
LongBool data type 25, 218
Longint data type 25
loop, infinite See infinite loop
low bounds of index type of an array, finding

31
Low function 24,31, 112, 131
lowest value in a range, finding 24
LowVideo procedure 144
LPT devices 141

M
$M compiler directive 52, 211
machine code in program 284
Mark procedure 212
MaxAvail function 132
Mem array 230
MernA vail function 132
MemL array 230
memory

allocation 199
map 210
model 281
references, built-in assembler 269
usage, Turbo Pascal and 209

Mem W array 230
method

declarations 103-107
designator 56

syntax of 40
methods 33-42, 103-107

activating 40
assembly language 283
calling

conventions 238
dynamic 239

declaring 37, 103
defined 33
designators 56
dynamic 38, 226, 239

how differ from virtual methods 38

Index

overriding 38
external 283
forward declaration 37
identifiers, qualified 37
implementation 37, 103
making them virtual 37
overriding inherited 37
parameters

Self 103
defined 238

type compatibility 110
qualifying method identifiers 37
static 37
virtual 37

calling 238
error checking 224

initializing 38
miscellaneous procedures and functions

Dos unit 162
WinDos unit 165

MkDir procedure 136
mod operator 69
Mode field 229
.MODEL directive 281
modular programming 118
Move procedure 133
MoveRel procedure 187
MoveTo procedure 187
MsDos procedure 160, 164

N
$N compiler directive 28, 29, 69, 130, 150, 155,

257
Name field 230
near

call 236
directive 98

nested procedures and functions 46, 236
network file access, read-only 139
New procedure 43, 56, 132,211,217

extended syntax 224
constructor passed as parameter 104, 114,
240

used as function 115
nil (reserved word) 43,56
NormVideo procedure 144
NoSound procedure 144

297

not operator 70, 180
NUL device 141
NULL character 167
null strings 19,29
null-terminated strings 31, 128, 167-174

defined 167
NULL character 167
pointers and 169
standard procedures and 173

number constants 18
numbers

counting 18
hexadecimal 19
integer 19
real 18

numeric
constants, built-in assembler 263
coprocessor

o

detecting 155
emulating, assembly language and 157
evaluation stack 153
using 149-157

$0 compiler directive 197
nonoverlay units and 202

.OBJ files 279
object

ancestor 34
component designators 56
descendant 34
files 279
scope 96

object-type
assignments 82
constants 62

object types 33-42, See also objects
components 33
declaring 36
domain 34
fields 33
instances 38
methods 33
rules of inheritance 33
scope

298

in private sections 36
in public sections 36

of identifier in 36
objects

ancestor 34
constructors 222, 225

declaring 103
defined 104
error recovery 106
virtual methods and 104

creating 38
destructors 104

declaring 103
defined 104

domain of 34
dynamic

instances 39
allocation and disposal of 104, 240

'method table 225
fields

designators 56
scope 36, 103

files in $L directive 280
instantiating 38
internal data format 222
methods, scope 36
pointers to 39
polymorphic 40, 110
virtual

method table 223
field 222
pointer initialization 225

methods
call error checking 224
calling 238

Odd function 131, 245
Ofs function 132
open

parameters 108, 111
array 32, 108, 113
how passed 235
string 3D, 108, 111

OpenString identifier 29, 108
operands 65

built-in assembler 261
operators 65-75

@@ (double address-of) 79
@ (address-of) 43, 56, 75
address-of (@) 79

Language Guide

and 70, 180
arithmetic 68
binary arithmetic 68
bitwise 69
Boolean 70
built-in assembler, defined 273
character pointer 71
div 69
logical 69
mod 69
not 70, 180
or 70, 180
precedence of 65, 69

built-in assembler 272
relational 73
set 72
shl70
shr 70
string 71
structure member selector 268
types of 68
unary arithmetic 69
xor 70, 180

optimization of code 245-251
or operator 70, 180
Ord function 24, 130, 245

applied to an enumerated-type value 27
used to return a Char value 26

order of evaluation 248
ordering between two string-type values 29
ordinal

procedures and functions 131
types 24-28

predefined 25
user-defined 25

ordinality
defined 24
enumerated constant 27
finding enumerated type's value 27
returning 24
returning Char values 26

Output variable 133
OutText procedure 179, 187
OutTextXY procedure 179, 187
overlaid

code, storing 211
initialization code 201

Index

programs
designing 197-204
writing 192

routines, calling via procedure pointers 202
overlay manager, initializing 198
Overlay unit 128, 192

procedures and functions 195
overlays 191-204

assembly language routines and 203
BP register and 203
buffer 193

loading and freeing up 194
optimization algorithm 194
probationary area 195
size 211

cautions 202
debugging 202
defined 191
in .EXE files 205
installing a read function 204
loading

into expanded memory 198
into memory 191

using 191-206
overriding

dynamic methods 38
inherited methods 37

overview of Turbo Pascal language 5
.OVR files 191
OvrClearBuf procedure 196
OvrCodeList variable 133
OvrDebugPtr variable 134
OvrDosHandle variable 134
OvrEmsHandle variable 134
OvrFileMode variable 196
OvrGetBuf function 196
OvrGetRetry function 195, 196
OvrHeapEnd variable 134
OvrHeapOrg variable 134
OvrHeapPtr variable 134
OvrHeapSize variable 134
OvrInit procedure 196
OvrInitEMS procedure 196, 199
OvrLoadCount variable 196
OvrLoadList variable 134
OvrReadBuf variable 196, 204
OvrResult variable 196

299

OvrSeg variable 204
OvrSetBuf procedure 196, 199,211
OvrSetRetry procedure 195, 196
OvrTrapCount variable 196

p
$P compiler directive 111
Pack procedure 130
packed

reserved word 30
string type 31
strings, comparing 74

PackTime procedure 160, 163
palette manipulation routines 177
ParamCount function 133
parameters 107-114

actual 82
command-line 133
constant 109
floating-point 234
formal 82, 107
open 111

array 108, 113
string 108, 111

passing 83, 233-235
Self 103

defined 238
type compatibility 110
types of 108
untyped 110
value 108, 234
variable 109
virtual method 240

ParamStr function 133
Pascal strings 168
passing parameters 233-235

by reference 233
by value 233

passing string variables of varying sizes 30
PChar data type 43
Pi function 130
PieSlice procedure 187
pointer (A) symbol 43, 56
pointer and address functions 132
Pointer data type 43, 221
pointer-type constants.63

300

pointers
assignment-compatibility of 40
comparing 74
to objects 39
types 43
values 56
variables 56

polymorphism
parameter type compatibility 110
pointer assignment 40

Port array 231
PortW array 231
Pos function 131
pound (#) character 19
precedence of operators 65, 69
precision

of real-type values 28
rules of arithmetic 25

Pred function 24, 131,245
predecessor of a value, returning 24
PrefixSeg variable 134, 209
Printer unit 128, 141
printing from a program 141
private

component sections 36
directive 17
procedures and functions 119

Private field 230
probationary area, overlay buffer 195
PROC directive 281
procedural

types 44-46
in expressions 78-79
type compatibility of 46
variable typecasts and 58

values 44
procedural-type constants 64
procedure

call models 98
declaration syntax 97
declarations 97-101

assembler 100
external 100
forward 99
inline 101
near and far 98

headings 98

Language Guide

statements 82
procedure and function declaration part 94
procedures 6, 97, See also procedures and

functions
date and time

Dos unit 160
WinDos unit 163

directory-handling 165
Dispose, extended syntax 224, 240

constructor passed as parameter 104, 114
entry / exit code, built-in assembler 275
external 157
far 236
file-handling

Dos unit 161
WinDos unit 164

flow control 130
graphics 185
interrupt 99

support
Dos unit 160
WinDos unit 164

miscellaneous
Dos unit 162
WinDos unit 165

near 236
nested 236
New

extended syntax 224
constructor passed as parameter 104,
114,240

used as function 115
ordinal 131
OvrSetRetry 195
parameters, built-in assembler 274
pointers, calling overlaid routines 202
process-handling procedures 161
stack frame, built-in assembler 275
standard 129
string 131

procedures and functions See also procedures;
functions
nested 46
written in assembler 279

call model 279
process-handling procedures 161

Index

program
block 5
comments 20
defined 5
heading 5, 117
lines, maximum length of 20
parameters 117
syntax 117
termination 241

Program Segment Prefix (PSP) 209
Ptr function 43, 56, 132, 245
public

component sections 36
directive 17
procedures and functions 119

PUBLIC directives 279
PutImage procedure 175, 180, 187
PutPixel procedure 180, 187

Q
qualified

identifiers 17
method

activating a 41
designator 41
identifiers 37, 56, 75, 103

qualifier syntax 54

R
$R compiler directive 39, 224

virtual method checking 224
Random function 133
Randomize procedure 133
RandSeed variable 134
range

checking 172
compile time 249

finding higest value in 24
finding lowest value in 24
of real-type values 28

read-only file access 139
Read procedure, textfiles 136, 137
reading syntax diagrams 14
ReadKey function 144
Readln procedure 136
ReadOnly constant 162

301

real
data types 28
numbers 28, 149,219

Real data type 28
real-type operations

80x87 floating type 28
software floating point 28

record
length 230
scope 95
types 32

record-type constant syntax 62
records 32, 55, 62, 222

fields 55
variant part 32

Rec5ize field 230
Rectangle procedure 187
recursive loop See recursive loop
redeclaration of variables 51
redirection 142
reentrant code 243, 244
register-saving conventions 241
RegisterBGldriver function 176, 183, 187,202
RegisterBGIfont function 183, 187, 202
registers

and inline statements 285
AX 235, 286
BP 241,243

overlays and 203
built-in assembler 265, 269
BX235,243
C5243
CX243
DI243
D5241,243
DX235,243
E5243
51243
5P241
55241
use, built-in assembler 256
using 235,241,243

Registers type 163
relational operators 73-75
Release procedure 212
relocation expressions, built-in assembler 270
RemoveDir procedure 165

302

Rename procedure 136
repeat statement syntax 87
repetitive statement syntax 87
reserved words 16

built-in assembler 261
defined 16
external 283
how identified in manuals 16
list of 16

Reset procedure 136, 147
RestoreCrtMode procedure 176, 187
RET instruction, built-in assembler 258
RETF instruction, built-in assembler 258
RETN instruction, built-in assembler 258
return character, defined 15
returning

Char values 26
the ordinality of a value 24
the predecessor of a value 24
the successor of a value 24

Rewrite procedure 136, 147
right

brace special symbol 16
bracket special symbol 1 ~

RmDir procedure 136
Round function 130, 245
round-off errors, minimizing 152
rules

governing boolean variables 26
of inheritance 33
of scope 95-96

run-time
errors 241, See also the Programmer's Reference
library overview 127-128

RunError procedure 130

5
$5 compiler directive 52
5aveIntXXXXX variables 134
scale factor syntax diagram 18
scope

block 95
in object types 36
object 96
record 95
rules of 95, 95-96
type identifiers 23

Language Guide

unit 96
screen

mode control 142
output operations 142

SearchRec type 163
Sector procedure 187
Seek procedure 136, 137
SeekEof function 136
SeekEoln function 136
segment definitions 280
segments 279
SegXXXX variables 134
SelectorInc variable 134
Self parameter 40, 41, 103, 240

defined 238
separating tokens 15
separators, defined 15
Seq function 132
set See also sets

constructors 66
syntax 76

membership testing 75
operators 72
types 42, 221

set-type constants 63
SetActivePage procedure 187
SetAllPalette procedure 187, 189
SetAspectRatio procedure 187
SetBkColor procedure 187
SetCBreak procedure 162, 165
SetColor procedure 187
SetCurDir procedure 165
SetDate procedure 160, 163
SetFAttr procedure 161, 164
SetFillPattem procedure 179, 187
SetFillStyle procedure 179, 187
SetFTime procedure 160, 163
SetGraphBufSize procedure 183, 187
,SetGraphMode procedure 176, 187
SetIntVec procedure 160, 164
SetLineStyle procedure 179, 187
SetPalette procedure 187
SetRGBPalette procedure 177, 187

IBM 8514 and 177
sets See also set

comparing 74
small 248

Index

SetTextBuf procedure 136
SetTextJustify procedure 179, 187
SetTextStyle procedure 179, 187
SetTime procedure 160, 164
SetUserCharSize procedure 179, 187
SetVerify procedure 162, 165
SetViewPort procedure 187
SetVisualPage procedure 187
SetWriteMode procedure 187
Shift instructions faster than multiply or divide

249
shl operator 70
short-circuit Boolean evaluation 70, 246
Shortint data type 25
shr operator 70
SI register 243
signed number syntax diagram 18
significand 219
simple

expression syntax 67
statement syntax 81
types 23-29

comparing 73
simple-type constants 59
Sin function 131
single character special symbols 16
Single data type 28, 151,220
size

of a given string, finding 29
of overlay buffer 211
of structured types, maximum 30
of text file buffer 230

SizeOf function 112, 133
small sets 248
smart linking 250
software

floating-point
model 28
restrictions 29

interrupts 243
sound operations

NoSound 144
Sound 144

Sound procedure 144
SP register 241
space characters 15

303

special symbols
built-in assembler 265
character pairs listed 16
single characters listed 16

SPtr function 132
Sqr function 131
Sqrt function 131
SS register 241
SSeg function 132
stack

80x87153
frame, built-in assembler use of 275
overflow 52
passing parameters and the 233
pointer 210
segment 52, 210

StackLimit variable 134
standard

directives 17
functions 129
procedure and function

defined 129
procedure or function used as a procedural value

46
procedures 129
units, list of 127

statement part syntax 94
statements 81, 81~92

assignment 82
case 85
compound 84
conditional 84
for 88
goto 83
if 84
procedure 82
repeat 87
repetitive 87
simple 81
structured 83
while 87
with 90

static methods 37
storing

null-terminated strings 31
overlaid code 211

Str procedure 131

304

StrCat function 168
StrComp function 168
StrCopy function 168
StrDispose function 168
StrECopy function 168
Str End function 168
StrIComp function 168
string See also strings

constants, built-in assembler 264
functions 131
literals, assigning to PChar 169
operator 71
procedures 131
type

default size 29
ordering between two values 29
packed 31

typed, constants 60
types 29, 221
variables 55

passing 30
strings See also string

character 19
length of 20

comparing 74
concatenating 71
coverting 168
embedding control characters in 19
length byte 221
maximum length of 221
null 19,29
null-terminated 31, 128, 167-174
Pascal 168

Strings unit 128, 167
functions in 167
using the 167

StrLCat function 168
StrLComp function 168
StrLCopy function 168
Str Len function 168
StrLIComp function 168
StrLower function 168
StrMove function 168
StrNew function 168
stroked fonts 175, 178
StrPas function 168
StrPCopy function 168

Language Guide

StrPos function 168
StrRScan function 168
StrScan function 169
structure member selector operator 268
structured

statement syntax 83
types 30, 30-42

structured-type constants 60
StrUpper function 169
styles, graphics 179
subrange type 27
subroutine block 98
Succ function 24, 131,245
successor of a value, returning 24
Swap function 133, 245
SwapVectors procedure 161
symbols 15

built-in assembler 265-268
invalid, built-in assembler 266
list of special 16
reserved, built-in assembler 265
scope access, built-in assembler 268
special, built-in assembler 265

syntax diagrams, reading 14
SysFile constant 162
System unit 117, 127, 155

floating-point routines 150

T
$T compiler directive 48, 75
tag field

(of records) 32
identifier 33

TDateTime type 166
term syntax 67
terminating a program 241
Test8087 variable 134, 156
testing

keyboard status 144
set membership 75

text 178
files 137

buffer 230
device drivers 146
devices 141

text color constants 145
TextAttr variable 145

Index

TextBackground procedure 144
TextColor procedure 144
TextHeight function 187
TextMode procedure 144
TextRec

record 229
type 163

TextWidth function 187
TFileRec type 166
tokens

categories of 15
defined 10, 15
examples of 10
separating 15

transfer functions 130
trapping interrupts 243
TRegisters type 166
True predefined constant identifier 26
Trunc function 130, 245
Truncate procedure 136
TSearchRec type 166
TTextRec

record 146
type 166

Turb03 unit 128
Turbo Assembler 280

80x87 emulation and 157
Turbo Pascal language overview 5-14
TURBO.TPL (run-time library) 127
type See also types

declaration 23
declaration part syntax 94
defined 10
identifier 23

type-checking, built in assembler 270
typecasting integer-type values 25
typecasts

value 77
variable 57

typed
constant

defined 11
syntax 58

files 228
TypeOf function 133
types 23-50

arra y 30, 222

305

Boolean 218
boolean 25
Byte 25
ByteBool218
Char 26,218
Comp 24,151
compatibility 47
compatible 46
declaration part 49
Double 24, 151
enumerated 26, 219
Extended 24, 151
file 42, 228
floating-point 28, 151,219

Comp 221
comparing values of 153
Double 220
Extended 220
Single 220

Graph unit 189
host 27
identical 46
identity 46
Integer 25, 218
integer

converting through typecasting 25
format of 25
range of 25

LongBool 25, 218
Longint 25
major classes 23
object 33-42

declaring 34
ordinal 24-28

characteristics of 24
predefined 25
user-defined 25

packed string 31
PChar 43
Pointer 43,221
procedural 44, 44-46, 78
Real 24
real 28

numbers 219
record 32, 222
set 42,221
Shortint 25

306

u

simple 23-29
Single 24, 151
string 29,221
structured 30-42
subrange 27
Word 25
WordBool25,218

unary
arithmetic operators 69
operands 65

unit syntax 118
units 118-124

80x87 coprocessor and 155
circular references 121
Crt 128, 142
defined 13
Dos 127, 159-163
Graph 128, 175
Graph3128
heading 118
identifiers 17
implementation part 119
indirect references 120
initialization

code 201
part 120

interface part 119
nonoverlay 202
Overlay 128, 192
overlays and 193
Printer 128, 141
reasons to use 13
scope of 96
standard, list of 127
Strings 128, 167
System 127
Turbo3128
uses clause 117
version number 121
WinDos 127, 163-166

Unpack procedure 130
UnpackTime procedure 160, 164
unsigned

constant syntax 66
integer syntax diagram 18

Language Guide

number syntax diagram 18
real syntax diagram 18

untyped
files 139,228
parameters 110

UpCase function 133
UserData field 229
uses clause 13, 117

v
Val procedure 131
value

parameters 108, 234
typecast syntax 77

var
declaration section 251
parameters 109, 234

and the built-in assembler 267
variable See also variables

declaration part syntax 94
declaration syntax 51
defined 10
parameters 109
reference

qualifiers 54
syntax 54

typecasts 57
and procedural types 58

variables 51-64
absolute 53
array 55
declarations 51
dynamic 43, 56, 211

disposing of 212
FileMode 139
global 52
Graph unit 189
in System unit 133

initialized 133
initialized in assembler 279
initializing 58
local 52
parameters 234
pointer 56
record 55

Index

references 53
string 55

variant part of records 32
VGA emulated modes 176
video memory 142
viewports 179
virtual

directive 37
methods 37

calling 238
error checking 224

initializing 38
parameter 240
table 223

field 222
pointer initialization 225

VolumeID constant 162

w
WhereX function 145
Where Y function 145
while statement syntax 87
WindMin variable 145
WinD os unit 127, 163-166

directory-handling procedures and functions
165

Window procedure 142, 144
windows 142
with statement syntax 90
word alignment, automatic 249
Word data type 25
WordBool data type 25, 218
Write procedure 136
Writeln procedure 136

80x87 coprocessor and 155
writing control characters 143

x
$X compiler directive 20,31,43,54, 71
xor operator 70, 180

z
zero-based character arrays 61, 169, 171

307

7.0

i

B o R L A N D
Corporate Headquarters: 1800 Green Hills Road, P.O. Box 660001 , Scotts Valley, CA 95067-0001 , (408) 438-8400. Offices in: Australia,
Belgium, Canada, Denmark, France, Germany, Hong Kong, Italy, Japan, Korea, Malaysia, Netherlands, New Zealand, Singapore, Spain,
Sweden, Taiwan, and United Kingdom ' Part 111 MN-TPL04-70 • BOR 4680

