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N T R 

Read the Introduction in the 
User's Guide for an overview 

of the entire Turbo Pascal 
documentation set and how 

to use the Turbo Pascal 
manuals most effectively. 

Introduction 

o D u c T o 

This manual is about the Turbo Pascal language. It 

• Presents the formal definition of the Turbo Pascal language 

• Introduces the run-time library and tells you how to use the 
units that make it up 

• Describes what goes on inside Turbo Pascal in regards to 
memory, data formats, calling conventions, input and output, 
and automatic optimizations 

• Explains how to use Turbo Pascal with assembly language 

You'll find this manual most useful if you are an experienced 
Pascal programmer. 

Read the User's Guide if 

• You want to know how to install Turbo Pascal 

N 

• You've used Turbo Pascal before and you want to know what is 
new in this release 

• You're not familiar with Borland's integrated development 
environment (the IDE) 

• You want to know how to use the integrated debugger 

• You want to refresh your knowledge about pointers 

• You are new to object-oriented programming 

Read the Programmer's Reference to look up reference material on 

• The run-time library 
• Compiler directives 
• Error messages 
• The command-line compiler 
• The editor 



What's in this manual 

2 

This book is split into four parts: language grammar, the run-time 
library, advanced programming issues, and using assembly 
language with Turbo Pascal. 

Part I, "The Turbo Pascal language," defines the Turbo Pascal 
language. First you're introduced to the overall structure of a 
Turbo Pascal program; then you examine each element of a 
program in detail. 

Part II, "The run-time library," contains information about using 
all the standard units: the System, Dos, WinDos, Strings, Crt, 
Overlay, and Graph units. 

Part III, "Inside Turbo Pascal," presents technical information for 
advanced users about 

• How Turbo Pascal uses memory 
• How Turbo Pascal implements program control 
• Using the 80x87 
• Optimizing your code 

Part IV, "Using Turbo Pascal with assembly language," explains 
how to use the built-in assembler and how to link your Turbo 
Pascal programs with code written in Turbo Assembler. 

Language Guide 
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c H A p T E R 

1 

What is a Turbo Pascal program? 

The next several chapters present the formal definition of the 
Turbo Pascal language. Each chapter discusses an element of 
Turbo Pascal. Together, these elements make up a Turbo Pascal 
program. 

It's difficult to gain an understanding of the whole by examining 
only the parts, however. This chapter presents an overview of a 
Turbo Pascal program and omits the details. It gives you a brief 
description of each of the elements of a program and then shows 
you how they all fit together. You can then refer to Chapters 2 
through 10 to find the details of the language. 

A Turbo Pascal program 

In its simplest form, a Turbo Pascal program is made up of a 
program heading, which names the program, and the main program 
block, which accomplishes the purpose of the program. Within the 
main program block is a section of code that occurs between two 
key words: begin and end. Here is a very simple program that 
illustrates these concepts: 

program Welcome; 
begin 

Writeln('Welcome to Turbo Pascal'); 
end. 

Chapter 1, What is a Turbo Pascal program? 5 



The first line is the program heading, which names the program. 
The remainder of the program is the code that starts with begin 
and stops with end. Although this particular code section contains 
only one line, it could contain many. In any Turbo Pascal 
program, all the action occurs between begin and end. 

Procedures and functions 

6 

Figure 1.1 
Procedure or function 

diagram 

The code between the last begin and end in a program drives the 
logic of the program. In a very simple program, this section of 
code might be all you need. In larger, more complex programs, 
putting all your code here can make your program harder to read 
and understand-and more difficult to develop. 

Procedures and functions let you divide the logic of a program into 
smaller, more manageable chunks, and are similar to subroutines 
in some other languages. All the action in a procedure or function 
occurs in the code between its begin and end just like in the main 
program block. Each of these segments of code performs a small, 
discrete task. 

Procedure or function 

Procedure or function heading 

Procedure or function block 

begin 

!.L09iC 

end; 

If you find your program does the same thing many times, you 
might want to put the logic into a procedure or function. You 
write the code in a procedure or function once and your program 
can use it as often as necessary. 

Here is an example of a function. This GetNumber function gets a 
number from the user: 

Language Guide 



Figure 1.2 
Simple Pascal program 

diagram 

function GetNumber: Reali 
var 

Response: Reali 
begin 

Write('Enter a number: ') i 
Readln(Response)i 
GetNumber := Responsei 

endi 

A procedure or function must appear before the main code 
section in the main program block. The main code section can 
then use the procedure or function. 

Pascal program 

Program heading 

Main program block 

I Procedures or functions (0 or more) 

begin 

I Main program logic 

end. 

The following example is an outline of a program that uses the 
GetNumber function. The programmer has divided the logic of this 
program into three tasks: 

1. Get a number from the user. 

2. Perform the necessary calculations with the user-supplied 
number. 

3. Print a report. 

The main logic of the program is found between the last begin 
and end. 

Chapter 1, What is a Turbo Pascal program? 7 
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program Report; 

var 
A: Real; 

{more declarations} 

function GetNumber: Real; 
var 

Response: Real; 
begin 

Write{'Enter a number: '); 
Readln{Response); 
GetNumber := Response; 

end; 

procedure Calculate{X: Real); 

procedure PrintReport; 

begin 
A := GetNumber; 
Calculate (A) ; 
PrintReport; 

end. 

The primary logic in this program is very simple to understand. 
All the details are hidden within the bodies of the procedures and 
functions. Using procedures and functions encourages you to 
think about your program in a logical, modular way. 

The code section between begin and end contains statements that 
describe the actions the program can take and is called the 
statement part. These are examples of statements: 

A := B + C; 

Calculate {Length, Height); 

if X < 2 then 
Answer := X * Y; 

begin 
X := 3; 
Y := 4; 
Z : = 5; 

end; 

{Assign a value} 

{Activate a procedure} 

{Conditional statement} 

{Compound statement} 

Language Guide 



Expressions 

while not EOF(InFile) do 
begin 

Readln(InFile, Line); 
Process(Line); 

end; 

{Repetitive statement} 

Simple statements can either assign a value, activate a procedure 
or function, or transfer the running of the program to another 
statement in the code. The first two examples shown in the 
examples are simple statements. 

Structured statements can be compound statements that contain 
multiple statements, conditional and repetitive statements that 
control the flow of logic within a program, and with statements 
that simplify access to data in a record. 

You might compare a Pascal statement to a sentence in a human 
language such as English, Danish, or Greek. Simple Pascal 
statements and simple human sentences hold one complete 
thought. Structured Pascal statements and complex sentences 
contain more complicated logic. 

Just as a sentence is made up of phrases, so is a Pascal statement 
made up of expressions. The phrases of a sentence are made up of 
words, and the expressions of a statement are composed of ele­
ments called factors and operators. Expressions usually compare 
things or perform arithmetic, logical, or Boolean operations. 

Just as phrases in a human language can be made up of smaller 
phrases, so can expressions in Pascal be made up of simpler 
expressions. You can read about all the combinations of factors 
and operators in Chapter 6 that make up expressions. They can be 
quite complex. For now, it might help to see some examples of 
expressions: 

x + Y 
Done <> Error 
I <= Length 
-x 
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Tokens 

Figure 1.3 
Statement diagram 

Tokens are the smallest meaningful elements in a Pascal program. 
They make up the factors and operators of expressions. Tokens 
are special symbols, reserved words, identifiers, labels, numbers, 
and string constants; they are akin to the words and punctuation 
of a written human language. These are examples of Pascal 
tokens: 

function 

Calculate 
9 

{reserved word} 
{special symbol} 
{special symbol} 
{identifier for a procedure} 
{number} 

Here is an illustration of a statement. You can see that statements 
are made up of expressions, which are made up of tokens. 

Statements (1 or more) 

Expressions (1 or more) 

Tokens (1 or more) 

Types, variables, constants, and typed constants 

10 

A variable can hold a value that can change. Every variable must 
have a type. A variable's type specifies the set of values the 
variable can have. 

For example, this program declares that variables X and Yare of 
type Integer; therefore, the only values X and Y can contain are 
integers, which are whole numbers. Turbo Pascal displays an 
error message if your program tries to assign any other type of 
value to these variables. 
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program Example; 

const 

var 

A = 12; 
B: Integer = 23; 

X, Y: Integer; 
J: Real; 

begin 
X := 7; 
Y := 8; 
X := Y + Y; 
B := 57; 
J := 0.075; 

end. 

{Constant A never changes in value} 
{Typed constant B gets an initial value} 

{Variables X and Yare type Integer} 
{Variable J is type Real} 

{Variable X is assigned a value} 
{Variable Y is assigned a value} 
{The value of variable X changes} 
{Typed constant B gets a new value} 
{Variable J gets a floating-point value} 

In this simple and not very useful program, X is assigned the 
value 7 originally; two statements later it is assigned a new value, 
Y + Y. The value of a variable can vary. 

A is a constant. The program gives it a value of 12 and this value 
can't change-its value remains constant throughout the 
program. 

B is a typed constant. It's given a value when it's declared, but it's 
also given a type of Integer. You can think of a typed constant as a 
variable with an initial value. The program can later change the 
initial value of B to some other value. 

The part of this program that declares the constants and variables 
is called the declaration part. 

If you'll look back at the code example on page 7, you'll see that 
the function GetNumber has a declaration part that declares a 
variable. Procedures and functions can contain a declaration part 
just as a program or unit can. 

Putting it all together 

Now that you've been introduced to the primary components of a 
Turbo Pascal program, you need to see how they all fit together. 
Here's an illustration of a Turbo Pascal program: 
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Figure 1.4 
An expanded Pascal 

program 
Pascal program 

Program heading 

Uses clause (optional) 

Main program block 

Declarations 

Procedures or functions (0 or more) 

Procedure or function heading 

begin 

Statements (1 or more) 

end. 

The program heading, the optional uses clause (we'll talk about 
this in the next section), and the main program block make up a 
Pascal program. Within the main program block can exist the 
smaller blocks of procedures and functions. Although the 
diagram doesn't show this, procedures and functions can be 
nested within other procedures and functions. In other words, 
blocks can contain other blocks. 

Combined with other tokens and blank spaces, tokens make up 
expressions which make up statements. 
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Units 

In turn, statements combined with declaration parts make up 
blocks, either the main program block or a block in a procedure or 
function. 

A Turbo Pa,scal program can use blocks of code in separate 
modules called units. You can think of a unit as a mini-program 
your application can use. Like a program, it has a heading, called 
a unit heading, and a main block that contains a code section 
delineated by begin and end. 

Any Turbo Pascal main program block can include a line that 
enables the program to use one or more units. For example, if you 
are writing a program called Colors and you want to change the 
color of the text as it appears on your screen, you can specify that 
your program use the standard Crt unit that is part of the Turbo 
Pascal run-time library: 

program Colors; 
uses Crt; 
begin 

end. 

The uses Crt line tells Turbo Pascal to include the Crt unit in the 
executable program. The Crt unit contains all the necessary code 
to change the color of the text in your program, among other 
things. Simply by including uses Crt, your program can use all 
the procedures and functions in the Crt unit. If you put all the 
code required to create the functionality of the Crt unit within 
your program, it would be a lot more work, and it would 
sidetrack you from the main purpose of your program. 

Turbo Pascal's run-time library includes several units you'll find 
useful. For example, use the Dos unit and your program has 
access to several operating system and file-handling routines. 

You can also write your own units. Use them to divide large 
programs into logically related modules. Code you place in a unit 
can be used by any program. You only have to write the code 
once, then you can use it many times. 

Chapter 7, What is a Turbo Pascal program? 13 



Syntax diagrams 
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As you read Chapters 2 through 10, which define the Turbo 
Pascal language, you'll encounter syntax diagrams. For example, 

formal parameter list 

To read a syntax diagram, follow the arrows. Frequently, more 
than one path is possible. The above diagram indicates that a 
formal parameter list is optional in a procedure heading. You can 
follow the path from the identifier to the end of the procedure 
heading, or you can follow it to the formal parameter list before 
reaching the end. 

The names in boxes stand for constructions. Those in circles­
reserved words, operators, and punctuation-are the actual terms 
used in the program; they are boldfaced in the diagrams. 
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c H 

Separators can't be part of 
tokens except in string 

constants. 

Special symbols 

Chapter 2, Tokens 

A p T E R 

2 

Tokens 

Tokens are the smallest meaningful units of text in a Pascal 
program. They are categorized as special symbols, identifiers, 
labels, numbers, and string constants. 

A Pascal program is made up of tokens and separators. A 
separator is either a blank or a comment. Two adjacent tokens 
must be separated by one or more separators if each token is a 
reserved word, an identifier, a label, or a number. 

Turbo Pascal uses the following subsets of the ASCII character set: 

• Letters-the English alphabet, A through Z and a through z 

• Digits-the Arabic numerals a through 9 

• Hex digits-the Arabic numerals a through 9, the letters A 
through F, and the letters a through f 

• Blanks-the space character (ASCII 32) and all ASCII control 
characters (ASCII a through 31), including the end-of-line or 
return character (ASCII 13) 

These are the syntax diagrams for letter, digit, and hex digit: 
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digit -----.-----, 

¢ ... ~ 

hex digit 4 digiti I $ ... cp A··· F 

• 

Special symbols are characters that have one or more fixed 
meanings. 

The following single characters are special symbols: 

+ _ * / = < > [] ., () : ; 'A @ { } $# 

These character pairs are also special symbols: 

<= >= := .. (* *) (. .) 

A left bracket ([) is equivalent to the character pair of left 
parenthesis and a period-(., and a right bracket (]) is equivalent 
to the character pair of a period and a right parenthesis-.). 
Likewise, a left brace ({) is equivalent to the character pair of left 
parenthesis and an asterisk-(*, and a right brace 0) is equivalent 
to the character pair of an asterisk and a right parenthesis-*). 

Reserved words and standard directives 

Reserved words can'f be 
redefined. 

Table 2.1 
Turbo Pascal reserved words 
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Reserved words appear in boldface throughout this manual. 
Turbo Pascal is not case sensitive, however, so you can use either 
uppercase or lowercase letters in your programs. 

Following are Turbo Pascal's reserved words: 

and file not then 
array for object to 
asm function of type 
begin goto or unit 
case if packed until 
const implementation procedure uses 
constructor in program var 
destructor inherited record while 
div inline repeat with 
do interface set xor 
downto label shl 
else mod shr 
end nil string 

Language Guide 



Table 2,2 
Turbo Pascal directives 

Identifiers 

Units are described in 
Chapter 5 of the User's Guide 
and Chapter 10 of this book. 

Chapter 2, Tokens 

The following are Turbo Pascal's standard (built-in) directives. 
Directives are used only in contexts where user-defined identifiers 
can't occur. Unlike reserved words, you can redefine standard 
directives, but we advise that you don't. 

absolute 
assembler 
external 

far 
forward 
interrupt 

near 
private 
public 

private and public act as reserved words within object type 
declarations, but are otherwise treated as directives. 

Identifiers denote constants, types, variables, procedures, 
functions, units, programs, and fields in records. 

virtual 

An identifier can be of any length, but only the first 63 characters 
are significant. An identifier must begin with a letter or an under­
score character U and can't contain spaces. Letters, digits, and 
underscore characters (ASCII $5F) are allowed after the first char­
acter. Like reserved words, identifiers are not case sensitive. 

When several instances of the same identifier exist, you may need 
to qualify the identifier by another identifier to select a specific 
instance. For example, to qualify the identifier ldent by the unit 
identifier UnitName, write UnitName.Ident. The combined 
identifier is called a qualified identifier. 

identifier 

underscore -G-
qualified ~d t'f' 
identifier ~ 
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Here are some examples of identifiers and qualified identifiers: 

Writeln 
Exit 
Rea12String 
System. MemAvail 
Strings.StrLen 
WinCrt.ReadText 

In this manual, standard and user-defined identifiers are italicized 
when they are referred to in text. 

Ordinary decimal notation is used for numbers that are constants 
of type Integer and Real. A hexadecimal integer constant uses a 
dollar sign ($) as a prefix. Engineering notation (E or e, followed 
by an exponent) is read as "times ten to the power of" in real 
types. For example, 7E-2 means 7 x 10-2; 12.25e+6 or 12.25e6 both 
mean 12.25 x 10+6. Syntax diagrams for writing numbers follow: 

hex digit sequence -rl. hex digit tT--
digit sequence~ 

unsigned integer 

Signw 

unsigned real 

digit sequence digit sequence 11--;:::========:::;-,+ 
scale factor 

scale factor ~ Lr;i5t II digit sequence ~ 
~ e . 

unsigned number 

signed number 

unsigned integer 

unsigned real 

L@ I unsigned number f-­
sign 
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Labels 

Numbers with decimals or exponents denote real-type constants. 
Other decimal numbers denote integer-type constants; they must 
be within the range -2,147,483,648 to 2,147,483,647. 

Hexadecimal numbers denote integer-type constants; they must 
be within the range $00000000 to $FFFFFFFF. The resulting value's 
sign is implied by the hexadecimal notation. 

A label is a digit sequence in the range 0 to 9999. Leading zeros 
are not significant. Labels are used with goto statements. 

label 

As an extension to Standard Pascal, Turbo Pascal also allows 
identifiers to function as labels. 

Character strings 

Chapter 2, Tokens 

A character string is a sequence of zero or more characters from 
the extended ASCII character set, written on one line in the 
program and enclosed by apostrophes. A character string with 
nothing between the apostrophes is a null string. Two sequential 
apostrophes within a character string denote a single character, an 
apostrophe. For example, 

'TURBO' 
'You"ll see' 

{ TURBO } 
{ You'll see} 
{ , } 

{ null string } 
{ a space } 

As an extension to Standard Pascal, Turbo Pascal lets you embed 
control characters in character strings. The # character followed by 
an unsigned integer constant in the range 0 to 255 denotes a 
character of the corresponding ASCII value. There must be no 
separators between the # character and the integer constant. 
Likewise, if several control characters are part of a character 
string, there must be no separators between them. For example, 

19 



Comments 

The compiler directives are 
explained in Chapter 2 of the 

Programmer's Reference. 

Program lines 

20 

#13#10 
'Line l'#13'Line2' 
#7#7'Wake up!'#7#7 

character string quoted string 

control string 

quoted string -() 10--q string character P 
string character 

control string -r0=l unsigned integer t-T-
A character string's length is the actual number of characters in the 
string. A character string of any length is compatible with any 
string type, and with the PChar type when the extended syntax is 
enabled {$X+}. Also, a character string of length one is compatible 
with any Char type, and a character string of length N, where N is 
greater than or equal to one, is compatible with packed arrays of 
N characters. 

The following constructs are comments and are ignored by the 
compiler: 

{ Any text not containing right brace } 
(* Any text not containing star/right parenthesis *) 

A comment that contains a dollar sign ($) immediately after the 
opening { or (* is a compiler directive. A mnemonic of the compiler 
command follows the $ character. 

Turbo Pascal program lines have a maximum length of 126 
characters. 
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Wherever Standard Pascal 
allows only a simple con­

stant, Turbo Pascal allows a 
constant expression. 

Chapter 3, Constants 

A p T E R 

3 

Constants 

A constant declaration declares a constant within the block 
containing the declaration. A constant is an identifier that holds a 
value that can't change. A constant identifier can't be included in 
its own declaration. 

constant declaration rl identifier ~ constant ~0-r 

As an extension to Standard Pascal, Turbo Pascal allows the use of 
constant expressions. A constant expression is an expression that 
can be evaluated by the compiler without actually executing the 
program. Examples of constant expressions follow: 

100 
'A' 

256 - 1 
(2.5 + 1) (2.5 - 1) 

'Turbo' + ' , + 'Pascal' 
Chr (32) 
Ord ( , Z ') - Ord ( , A') + 1 

The simplest case of a constant expression is a simple constant, 
such as 100 or J A'. 

constant -l expression f--
Because the compiler has to be able to completely evaluate a 
constant expression at compile time, the following constructs are 
not allowed in constant expressions: 
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For expression syntax, see 
Chapter 6, "Expressions." 

• References to variables and typed constants (except in constant 
address expressions as described on page 59) 

• Function calls (except those noted in the following text) 

• The address operator (@) (except in constant address 
expressions as described on page 59) 

Except for these restrictions, constant expressions follow the same 
syntactical rules as ordinary expressions. 

The following standard functions are allowed in constant 
expressions: 

Abs High Low Pred SizeD! 
Chr Length Odd Ptr Succ 
Hi La Ord Round Swap 

Trunc 

Here are some examples of the use of constant expressions in 
constant declarations: 

const 
Min = 0; 
Max = 100; 
Center = (Max - Min) div 2; 
Beta = Chr(225); 
NumChars = Ord('Z') - Ord('A') + 1; 
Message = 'Out of memory' ; 
ErrStr = ' Error: ' + Message + '. '; 
ErrPos = 80 - Length (ErrStr) div 2; 
Ln10 = 2.302585092994045684; 
Ln10R = 1 / Ln10; 
Numeric = [' 0' .. ' 9' 1 ; 
Alpha = [' A' .. ' Z', , a' .. ' z' 1 ; 
AlphaNum = Alpha + Numeric; 
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Simple types 

Chapter 4, Types 

A p T E R 

4 

Types 

When you declare a variable, you must state its type. A variable's 
type circumscribes the set of values it can have and the operations 
that can be performed on it. A type declaration specifies the 
identifier that denotes a type. 

type declaration -I identifier ~~ 

When an identifier occurs on the left side of a type declaration, it's 
declared as a type identifier for the block in which the type 
declaration occurs. A type identifier's scope doesn't include itself 
except for pointer types. 

type 

type identifier 

There are five major type classes. They are described in the 
following sections. . 

Simple types define ordered sets of values. 
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Chapter 2 explains how to 
denote constant integer­

type and real-type values. 

Ordinal types 

simple type 

real type -I real type identifier f-
A real-type identifier is one of the standard identifiers: Real, 
Single, Double, Extended, or Compo 

Ordinal types are a subset of simple types. All simple types other 
than real types are ordinal types, which are set off by six 
characteristics: 

• All possible values of a given ordinal type are an ordered set, 
and each possible value is associated with an ordinality, which is 
an integral value. Except for integer-type values, the first value 
of every ordinal type has ordinality 0, the next has ordinality I, 
and so on for each value in that ordinal type. The ordinality of 
an integer-type value is the value itself. In any ordinal type, 
each value other than the first has a predecessor, and each value 
other than the last has a successor based on the ordering of the 
type. 

• The standard function Ord can be applied to any ordinal-type 
value to return the ordinality of the value. 

• The standard function Pred can be applied to any ordinal-type 
value to return the predecessor of the value. If applied to the 
first value in the ordinal type and if range-checking is enabled 
{$R+}, Pred produces a run-time error. 

• The standard function Suee can be applied to any ordinal-type 
value to return the successor of the value. If applied to the last 
value in the ordinal type and if range checking is enabled {$R+}, 
Suee produces a run-time error. 

• The standard function Low can be applied to an ordinal-type 
and to a variable reference of an ordinal type. The result is the 
lowest value in the range of the given ordinal type. 

• The standard function High can be applied to an ordinal-type 
and to a variable reference of an ordinal type. The result is the 
highest value in the range of the given ordinal type. 

The syntax of an ordinal type follows: 
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ordinal type 1 subrange type 

enumerated type 

ordinal type identifier 

Turbo Pascal has ten predefined ordinal types: Integer, Shortint, 
Longint, Byte, Word, Boolean, ByteBool, WordBool, LongBool, and 
Char. In addition, there are two other classes of user-defined 
ordinal types: enumerated types and subrange types. 

Integer types There are five predefined integer types: Shortint, Integer, Longint, 
Byte, and Word. Each type denotes a specific subset of the whole 
numbers, according to the following table: 

Table 4.1 
Predefined integer types 

Typecasting is described in 
Chapters 5 and 6. 

Chapter 4, Types 

Type 

Shortint 
Integer 
Longint 
Byte 
Word 

Range 

-128 .. 127 
-32768 .. 32767 

-2147483648 .. 2147483647 
0 .. 255 
0 .. 65535 

Format 

Signed 8-bit 
Signed 16-bit 
Signed 32-bit 
Unsigned 8-bit 
Unsigned 16-bit 

Arithmetic operations with integer-type operands use 8-bit, 16-bit, 
or 32-bit precision, according to the following rules: 

• The type of an integer constant is the predefined integer type 
with the smallest range that includes the value of the integer 
constant. 

• For a binary operator (an operator that takes two operands), 
both operands are converted to their common type before the 
operation. The common type is the predefined integer type 
with the smallest range that includes all possible values of both 
types. For example, the common type of Integer and Byte is 
Integer, and the common type of Integer and Word is Longint. The 
operation is performed using the precision of the common type, 
and the result type is the common type. 

• The expression on the right of an assignment statement is 
evaluated independently from the size or type of the variable 
on the left. 

• Any byte-sized operand is converted to an intermediate word­
sized operand that is compatible with both Integer and Word 
before any arithmetic operation is performed. 

An integer-type value can be explicitly converted to another 
integer type through typecasting. 
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Boolean types There are four predefined Boolean types: Boolean, ByteBool, 
WordBool, and LongBool. Boolean values are denoted by the 
predefined constant identifiers False and True. Because Booleans 
are enumerated types, these relationships hold: 

• False < True 
• Ord(False) = a 
• Ord(True) = 1 
.Succ(False) = True 
• Pred(True) = False 

Boolean and ByteBool variables occupy one byte, a WordBool 
variable occupies two bytes (one word), and a LongBool variable 
occupies four bytes (two words). Boolean is the preferred type and 
uses the least memory; ByteBool, WordBool, and LongBool exist 
primarily to provide compatibility with other languages and the 
Windows environment. 

A Boolean variable can assume the ordinal values a and 1 only, but 
variables of type ByteBool, WordBool, and LongBool can assume 
other ordinal values. An expression of type ByteBool, WordBool, or 
LongBool is considered False when its ordinal value is zero, and 
True when its ordinal value is nonzero. Whenever a ByteBool, 
WordBool, or LongBool value is used in a context where a Boolean 
value is expected, the compiler will automatically generate code 
that converts any nonzero value to the value True. 

Char type Char's set of values are characters, ordered according to the 
extended's ASCII character set. The function call Ord(Ch), where 
Ch is a Char value, returns Ch's ordinality. 

A string constant of length 1 can denote a constant character 
value. Any character value can be generated with the standard 
function Chr. 

Enumerated types Enumerated types define ordered sets of values by enumerating 
the identifiers that denote these values. Their ordering follows the 
sequence the identifiers are enumerated in. 

enumerated type -CD--I identifier list ~ 

identifier list ~ 
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When an identifier occurs within the identifier list of an 
enumerated type, it's declared as a constant for the block the 
enumerated type is declared in. This constant's type is the 
enumerated type being declared. 

An enumerated constant's ordinality is determined by its position 
in the identifier list it's declared in. The enumerated type it's 
declared in becomes the constant's type. The first enumerated 
constant in a list has an ordinality of zero. 

Here's an example of an enumerated type: 

type 
Suit = (Club, Diamond, Heart, Spade); 

Given these declarations, Diamond is a constant of type Suit. 

When the Ord function is applied to an enumerated type's value, 
Ord returns an integer that shows where the value falls with 
respect to the other values of the enumerated type. Given the 
preceding declarations, Ord(Club) returns zero, Ord(Diamond) 
returns I, and so on. 

Subrange types A sub range type is a range of values from an ordinal type called 
the host type. The definition of a subrange type specifies the 
smallest and the largest value in the subrange; its syntax follows: 

Chapter 4, Types 

subrange type -I constant ~o-I constant ~ 

Both constants must be of the same ordinal type. Sub range types 
of the form A .. B require that A is less than or equal to B. 

These are examples of subrange types: 

o .. 99 
-128 .. 127 
Club .. Heart 

A variable of a sub range type has all the properties of variables of 
the host type, but its run-time value must be in the specified 
interval. 

One syntactic ambiguity ar~ses from allowing constant expres­
sions where Standard Pascal only allows simple constants. 
Consider the following declarations: 
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Real types 

Table 4.2 
Real data types 

The Comp type holds only 
integral values within 

_2'3+ 7 to 2'3- 7, which is 
approximately-9.2x 7078 to 

9.2x 70 78• 
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const 
X = 50; 
Y = 10; 

type 
Color = (Red, Green, Blue); 
Scale = (X - Y) * 2 .. (X + Y) * 2; 

Standard Pascal syntax dictates that, if a type definition starts 
with a parenthesis, it's an enumerated type, such as the Color type 
in the previous example. The intent of the declaration of scale is to 
define a subrange type, however. The solution is to reorganize the 
first subrange expression so that it doesn't start with a 
parenthesis, or to set another constant equal to the value of the 
expression and use that constant in the type definition: 

type 
Scale = 2 * (X - Y) .. (X + Y) * 2; 

A real type has a set of values that is a subset of real numbers, 
which can be represented in floating-point notation with a fixed 
number of digits. A value's floating-point notation normally 
comprises three values-M, B, and E-such that M x BE = N, 
where B is always 2, and both M and E are integral values within 
the real type's range. These M and E values further prescribe the 
real type's range and precision. 

There are five kinds of real types: Real, Single, Double, Extended, 
and Camp. The real types differ in the range and precision of 
values they hold as shown in the following table: 

Type 

Real 
Single 
Double 
Extended 
Camp 

Range 

2.9 X 10-39 .. 1.7 X 1038 
1.5 X 10-45 .. 3.4 X 1038 

5.0 X 10-324 .. 1.7 X 10308 
3.4 X 10-4932 .. 1.1 X 104932 

_263+ 1 .. 263-1 

Significant 
digits 

11-12 
7-8 

15-16 
19-20 
19-20 

Size in 
bytes 

6 
4 
8 

10 
8 

Turbo Pascal supports two models of code generation for 
performing real-type operations: software floating point and 80x87 
floating point. Use the $N compiler directive to select the 
appropriate model. If no 80x87 is present, enable the $E compiler 
directive to provide full 80x87 emulation in software. 
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Software floating point 

80x8? floating point 

For more details on 80x87 
floating-point code 

generation and software 
emulation, refer to 

Chapter 74, "Using the 
80x87." 

String types 

Operators for the string types 
are described in the sections 

"String operator" and 
"Relational operators" in 

Chapter 6. 

String-type standard 
procedures and functions 

are described in "String 
procedures and functions" 

on page 737. 

Chapter 4, Types 

In the {$N-} state, which is selected by default, the generated code 
performs all real-type calculations in software by calling run-time 
library routines. For reasons of speed and code size, only opera­
tions on variables of type Real are allowed in this state. Any 
attempt to compile statements that operate on the Single, Double, 
Extended, and Camp types generates an error. 

In the {$N+} state, the generated code performs all real-type 
calculations using 80x87 instructions and can use all five real 
types. 

Turbo Pascal includes a run-time library that will automatically 
emulate an 80x87 in software if one isn't present. The $E compiler 
directive is used to determine whether or not the 80x87 emulator 
should be included in a program. 

A string-type value is a sequence of characters with a dynamic 
length attribute (depending on the actual character count during 
program execution) and a constant size attribute from Ito 255. A 
string type declared without a size attribute is given the default 
size attribute 255. The length attribute's current value is returned 
by the standard function Length. 

string type -c3I--T---:::;:::---;::::==========:::;--;::::-r-l-CD--I unsigned integer ~ 

The ordering between any two string values is set by the ordering 
relationship of the character values in corresponding positions. In 
two strings of unequal length, each character in the longer string 
without a corresponding character in the shorter string takes on a 
higher or greater-than value; for example, 'xs' is greater than 'x'. 
Null strings can be equal only to other null strings, and they hold 
the least string values. 

Characters in a string can be accessed as components of an array. 
See the section" Arrays, strings, and indexes" on page 55. 

The Low and High standard functions can be applied to a string­
type identifier and to a variable reference of a string type. In this 
case, Low returns zero, and High returns the size attribute 
(maximum length) of the given string. 
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Read about open string 
parameters on page 111. 

Structured types 

The maximum permitted size 
of any structured type in 

Turbo Pascal is 65,520 bytes. 

Array types 

30 

A variable parameter declared using the OpenString identifier, or 
using the string keyword in the {$P+} state, is an open string 
parameter. Open string parameters allow string variables of 
varying sizes to be passed to the same procedure or function. 

A structured type, characterized by its structuring method and by 
its component type(s), holds more than one value. If a component 
type is struCtured, the resulting structured type has more than 
one level of structuring. A structured type can have unlimited 
levels of structuring. 

structured type -or---=~---'r--or--~ 
~=======::::.--, 

In Standard Pascal, the word packed in a structured type's 
declaration tells the compiler to compress data storage, even at 
the cost of diminished access to a component of a variable of this 
type. In Turbo Pascal, however, packed has no effect; instead 
packing occurs automatically whenever possible. 

Arrays have a fixed number of components of one type-the 
component type. In the following syntax diagram, the component 
type follows the word of. 

index type -I ordinal type r 
The index types, one for each dimension of the array, specify the 
number of elements. Valid index types are all ordinal types except 
Longint and 5ubranges of Longint. The array can be indexed in 
each dimension by all values of the corresponding index type; 
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See "Arrays, strings, and 
indexes" on page 55. 

See "Identical and 
compatible types" on 

page 46. 

Chapter 4, Types 

therefore, the number of elements is the product of the number of 
values in each index type. 

The following is an example of an array type: 

array[1 .. 100] of Real 

If an array type's component type is also an array, you can treat 
the result as an array of arrays or as a single multidimensional 
array. For example 

array [Boolean] of array[l .. 10] of array[Size] of Real 

is interpreted the same way by the compiler as 

array [Boolean, 1 .. 10,Size] of Real 

You can also express 

packed array[l .. 10] of packed array[1 .. 8] of Boolean 

as 

packed array[l .. 10,1 .. 8] of Boolean 

You access an array's components by supplying the array's 
identifier with one or more indexes in brackets. 

When applied to an array-type identifier or a variable reference of 
an array type, the Low and High standard functions return the low 
and high bounds of the index type of the array. 

An array type of the form 

packed array[M .. N] of Char 

where M is less than N is called a packed string type (the word 
packed can be omitted because it has no effect in Turbo Pascal). A 
packed string type has certain properties not shared by other 
array types, as explained below. 

An array type of the form 

array[O .. X] of Char 

where X is a positive nonzero integer is called a zero-based 
character array. Zero-based character arrays are used to store null­
terminated strings, and when the extended syntax is enabled (using 
a {$X+} compiler directive), a zero-based character array is 
compatible with a PChar value. For a complete discussion of this 
topic, read Chapter 16, "Using null~terminated strings," 
beginning on page 167. 
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Read about open array 
parameters on page 773. 

Record types 

A parameter declared using the array of T syntax is an open array 
parameter. Open array parameters allow arrays of varying sizes to 
be passed to the same procedure or function. 

A record type comprises a set number of components, or fields, 
that can be of different types. The record-type declaration speci­
fies the type of each field and the identifier that names the field. 

record type ~-1--;:======:::;1~'~ 
Lj field list ~ 

field list L'I -f::-"ix-ed-:--p-art-' L:G)OOT=l variant part po c::o==t I 

fixed part ---c identifier list ~ 

The fixed part of a record type sets out the list of fixed fields, 
giving an identifier and a type for each. Each field contains 
information that is always retrieved in the same way. 

The following is an example of a record type: 

type 
TDateRec = record 

Year: Integer; 
Month: 1. .12; 
Day: 1..31; 

end; 

The variant part shown in the syntax diagram of a record-type 
declaration distributes memory space for more than one list of 
fields, so the information can be accessed in more ways than one. 
Each list of fields is a variant. The variants overlay the same space 
in memory, and all fields of all variants can be accessed at all 
times. 

r,---;::======:;-:::::t-J tag field type 

tag field type -I ordinal type identifier 1-
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Object types 

Chapter 4, Types 

variant~ 
",---------," I CD-~Idlist! 

You can see from the diagram that each variant is identified by at 
least one constant. All constants must be distinct and of an ordinal 
type compatible with the tag field type. Variant and fixed fields 
are accessed the same way. 

An optional identifier, the tag field identifier, can be placed in the 
variant part. If a tag field identifier is present, it becomes the iden­
tifier of an additional fixed field-the tag field-of the record. The 
program can use the tag field's value to show which variant is 
active at a given time. Without a tag field, the program selects a 
variant by another criterion. 

Some record types with variants follow: 

type 
TPerson = record 

FirstName, LastNarne: string[40]; 
BirthDate: TDate; 
case Citizen: Boolean of 

end; 

True: (BirthPlace: string[40]); 
False: (Country: string[201; 

EntryPort: string[20]; 
EntryDate: TDate; 
ExitDate: TDate); 

TPolygon = record 
X, Y: Real; 
case Kind: Figure of 

end; 

TRectangle: (Height, Width: Real); 
TTriangle: (Sidel, Side2, Angle: Real); 
TCircle: (Radius: Real); 

An object type"is a structure consisting of a fixed number of com­
ponents. Each component is either a field, which contains data of a 
particular type, or a method, which performs an operation on the 
object. Similar to a variable declaration, the declaration of a field 
specifies the field's data type and an identifier that names the 
field. Similar to a procedure or function declaration, the decla­
ration of a method specifies a procedure, function, constructor, or 
destructor heading. 
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These dec/orations are 
referred to by other 

examples throughout this 
chapter. 

An object type can inherit components from another object type. If 
T2 inherits from Tl, then T2 is a descendant of Tl, and Tl is an 
ancestor of T2. 

Inheritance is transitive; that is, if T3 inherits from T2, and T2 
inherits from Tl, then T3 also inherits from Tl. The domain of an 
object type consists of itself and all its descendants. 

object type 

heritage -cD--! object type identifier ~ 

component list -r---;==========~~rl-;::::======~""­Lj object field list ~ Lj method list ~ 

object field list 
~'--i-d-en-t-ifi-er-lis-t-~ type t-:O-r 
method list 

method heading I-y---------------~ 

integer constant 

method heading 

component section 

procedure heading I---r­

function heading 

constructor heading 

destructor heading 

}--~+I component list 

The following code shows examples of object-type declarations: 

type 
TPoint = object 

X, Y: Integer; 
end; 

TRectangle = object 
A, B: TPoint; 
procedure Init(XA, YA, XB, YB: Integer); 
procedure Copy(var R: TRectangle); 
procedure Move(DX, DY: Integer); 
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procedure Grow(DX, DY: Integer); 
procedure Intersect (var R: TRectangle); 
procedure Union(var R: TRectangle); 
function Contains(D: TPoint): Boolean; 

end; 

PString = AString; 

PField ATField; 

TField object 
private 

x, Y, Len: Integer; 
Name: String; 

public 
constructor Copy(var F: TField); 
constructor Init(FX, FY, FLen: Integer; FName: String); 
destructor Done; virtual; 
procedure Display; virtual; 
procedure Edit; virtual; 
function GetStr: String; virtual; 
function PutStr(S: String): Boolean; virtual; 

private 
procedure DisplayStr(X, Y: Integer; S: String); 

end; 

PStrField ATStrField; 

TStrField object (TField) 
private 

Value: PString; 
public 

constructor Init(FX, FY, FLen: Integer; FName: String); 
destructor Done; virtual; 
function GetStr: String; virtual; 
function PutStr(S: String): Boolean; virtual; 
function Get: String; 
procedure Put(S: String); 

end; 

PNumField ATNumField; 

TNumField object (TField) 
private 

Value, Min, Max: Longint; 
public 

constructor Init(FX, FY, FLen: Integer; FName: String; 
FMin, FMax: Longint); 

function GetStr: String; virtual; 
function PutStr(S: String): Boolean; virtual; 
function Get: Longint; 
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Components and 
scope 

procedure Put(N: Longint); 
end; 

PZipField = ATZipField; 

TZipField = object (TNurnField) 
public 

function GetStr: String; virtual; 
function PutStr(S: String): Boolean; virtual; 

end; 

Contrary to other types, an object type can be declared only in a 
type declaration part in the outermost scope of a program or unit. 
Therefore, an object type can't be declared in a variable decla­
ration part or within a procedure, function, or method block. 

The component type of a file type can't be an object type, or any 
structured type with an object-type component. 

The scope of a component identifier extends over the domain of 
its object type. Also, the scope of a component identifier extends 
over procedure, function, constructor, and destructor blocks that 
implement methods of the object type and its descendants. For 
this reason, the spelling of a component identifier must be unique 
within an object type and all its descendants and all its methods. 

Component identifiers declared in the component list that 
immediately follows the object-type heading and component 
identifiers declared in public component sections have no special 
restrictions on their scope. In contrast, the scope of component 
identifiers declared in private component sections is restricted to 
the module (program or unit) that contains the object-type 
declaration. In other words, private component identifiers act like 
normal public component identifiers within the module that 
contains the object-type declaration, but outside the module, any 
private component identifiers are unknown and inaccessible. By 
placing related object types in the same module, these object types 
can gain access to each other's private components without 
making the private components known to other modules. 

Within an object-type declaration, a method heading can specify 
parameters of the object type being declared, even though the 
declaration isn't yet complete. In the previous example on page 
34, the Copy, Intersect, and Union methods of the TRee tangle type 
illustrate this. 
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Methods 

Methods can be called only 
through an object instance 

variable. 

Read more about methods 
on page 103. 

The declaration of a method within an object type corresponds to 
a forward declaration of that method. This means that somewhere 
after the object-type declaration, and within the same scope as the 
object-type declaration, the method must be implemented by a 
defining declaration. 

When unique identification of a method is required, a qualified­
method identifier is used. It consists of an object-type identifier, 
followed by a period (.), followed by a method identifier. Like any 
other identifier, a qualified-method identifier can be prefixed with 
a unit identifier and a period, if required. 

qualified method identifier 

Y object type identifier K)--/ method identifier ~ 

Virtual methods By default, methods are static. With the exception of constructor 
methods, they can be made virtual by including a virtual directive 
in the method declaration. The compiler resolves calls to static 
methods at compile time. Calls to virtual methods are resolved at 
run time; this isknown as late binding. 

Chapter 4, Types 

If an object type declares or inherits any virtual methods, then 
variables of that type must be initialized through a constructor call 
before any call to a virtual method. Therefore, any object type that 
declares or inherits any virtual methods must also declare or 
inherit at least one constructor method. 

An object type can override (redefine) any of the methods it 
inherits from its ancestors. If a method declaration in a descen­
dant specifies the same method identifier as a method declaration 
in an ancestor, then the declaration in the descendant overrides 
the declaration in the ancestor. The scope of an override method 
extends over the domain of the descendant in which it's intro­
duced, or until the method identifier is again overridden. 

An override of a static method is free to change the method 
heading any way it pleases. In contrast, an override of a virtual 
method must match exactly the order, types, and names of the 
parameters, and the type of the function result, if any. The 
override must again include a virtual directive. 
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Dynamic methods Turbo Pascal supports an additional class of late-bound methods 
called dynamic methods. Dynamic methods differ from virtual 
methods only in the way dynamic method calls are d!spatched at 
run time. For all other purposes, a dynamic method can be 
considered equivalent to a virtual method. 

The declaration of a dynamic method is like that of a virtual 
method except that a dynamic method declaration must include a 
dynamic method index right after the virtual keyword. The dynamic 
method index must be an integer constant in the range 1..65535 
and it must be unique among the dynamic method indexes of any 
other dynamic methods contained in the object type or its 
ancestors. For example, 

procedure FileOpen(var Msg: TMessage); virtual 100; 

An override of a dynamic method must match the order, types, 
and names of the parameters and the type of the function result of 
the ancestral method exactly. The override must also include a 
virtual directive followed by the same dynamic method index as 
was specified in the ancestor object type. 

Instantiating objects An object is instantiated, or created, through the declaration of a 
variable or typed constant of an object type, or by applying the 
New procedure to a pointer variable of an object type. The 
resulting object is called an instance of the object type. For 
example, given these variable declarations, 

var 
F: TField; 
Z: TZipField; 
FP: PField; 
ZP: PZipField; 

F is an instance of TFieId and Z is an instance of TZipFieId. 
Likewise, after applying New to FP and ZP, FP points to an 
instance of TField and ZP points to an instance of TZipFieId. 

If an object type contains virtual methods, then instances of that 
object type must be initialized through a constructor call before 
any call to a virtual method. Here's an example: 

var 
s: TStrField; 

begin 
S.Init(l, 1,25, 'Firstname'); 
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S. Put ( 'Frank' ) ; 
S.Display; 

S.Done; 
end; 

If S.Init had not been called, then the call to S.Display causes this 
example to fail. 

Assignment to an instance of an object type doesn't initialize the 
instance. 

An object is initialized by compiler-generated code that executes 
between the time that the constructor call takes place and when 
execution actually reaches the first statement of the constructor's 
code block. 

If an object instance isn't initialized and range checking is 'on 
{$R+}, the first call to a virtual method of the object instance 
results in a run-time error. If range checking is off {$R-}, calling a 
virtual method of an uninitialized object instance results in 
undefined behavior. 

The rule of required initialization also applies to instances that are 
components of structured types. For example, 

var 
Comment: array[l .. 5] of TStrField; 
I: Integer; 

begin 
for I := 1 to 5 do Comment [I] .Init(l, I + 10, 40, 'Comment'); 

for I := 1 to 5 do Comment [I] .Done; 
end; 

For dynamic instances, initialization is typically coupled with 
allocation, and cleanup is typically coupled with deallocation, 
using the extended syntax of the New and Dispose procedures. 
Here's an example: 

var 
SP: PStrField; 

begin 
New(SP, Init(l, 1, 25, 'Firstnarne')); 
SPA.Put('Frank') ; 
SpA.Display; 

Dispose(SP, Done); 
end; 
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A pointer to an object type is assignment-compatible with a 
pointer to any ancestor object type. Therefore, during execution of 
a program, a pointer to an object type might point to an instance 
of that type or to an instance of any descendant type. 

For example, a pointer of type PZipField can be assigned to 
pointers of type PZipField, PNumField, and PField, and during 
execution of a program, a pointer of type PField might be either nil 
or point to an instance of TField, TStrField, TNumField, or 
TZipField, or any other instance of a descendant of TField. 

Pointer assignment-compatibility rules also apply to object-type 
variable parameters. For example, the TField.Copy method might 
be passed an instance of TField, TStrField, TNumField, TZipField, or 
any other instance of a descendant of TField. 

Method activations A method is activated through a function call or procedure 
statement consisting of a method designator followed by an actual 
parameter list. This type of call is known as a method activation. 

See "Function calls" on page 
76 and "Procedure method designator 

statements" on page 82. I.....-r;============:;--:::~n method identifier 

See "With statements" on 
page 90 and "Method 

declarations" on page 703. 
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variable reference 

The variable reference specified in a method designator must 
denote an instance of an object type, and the method identifier 
must denote a method of that object type. 

The instance denoted by a method designator becomes an implicit 
actual parameter of the method; it corresponds to a formal 
variable parameter named Self that possesses the object type 
corresponding to the activated method. 

For static methods, the declared (compile-time) type of the instance 
determines which method to activate. For example, the 
designators F.lnit and FpA.Init will always activate TField.lnit 

. because the declared type of F and FPA is TField. 

For virtual methods, the actual (run-time) type of the instance 
governs the selection. For example, the designator FPA . Display 
might activate TField.Display, TStrField.Display, TNumField.Display, 
or TZipField.Display, depending on the actual type of the instance 
pointed to by FP. 

Within a with statement that references an instance of an object 
type, the variable-reference part of a method designator can be 
omitted. In that case, the implicit Self parameter of the method 
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activation becomes the instance referenced by the with statement. 
Likewise, within a method, the variable-reference part of a 
method designator can be omitted. In that case, the implicit Self 
parameter of the method activation becomes the Self of the 
method containing the call. 

Qualified-method Within a method, a function call or procedure statement allows a 
activations qualified-method designator to denote activation of a specific 

method. This type of call is known as a qualified-method activation. 
See "Function calls" on page 

76 and "Procedure 
statements" on page 82. 

Chapter 4, Types 

qualified method designator 

object type identifier 

inherited 

method identifier 

The object type specified in a qualified-method designator must 
be the same as the enclosing method's object type or an ancestor 
of it. 

The reserved word inherited can be used to denote the ancestor of 
the enclosing method's object type; inherited can't be used within 
methods of an object type that has no ancestor. 

The implicit Self parameter of a qualified-method activation 
becomes the Self of the method containing the call. A qualified­
method activation never employs the virtual method dispatch 
mechanism-the call is always static and always invokes the 
specified method. 

A qualified-method activation is generally used within an 
override method to activate the overridden method. Referring to 
the types declared earlier on page 34, here are some examples of 
qualified-method activations: 

constructor TNumField.Init(FX, FY, FLen: Integer; 
FName: String; FMin, FMax: Longint); 

begin 
inherited Init(FX, FY, FLen, FName); 
Value := 0; 
Min := FMin; 
Max := FMax; 

end; 

function TZipField.PutStr(S: String): Boolean; 
begin 

PutStr .- (Length(S) = 5) and TNumField.PutStr(S); 
end; 
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Set types 

Set-type operators are 
described in the section "Set 
operators" in Chapter 6. "Set 

constructors" in the same 
chapter shows how to 

construct set values. 

File types 

42 

As these examples demonstrate, a qualified-method activation 
allows an override method to "reuse" the code of the method it 
overrides. 

A set type's range of values is the power set of a particular ordinal 
type (the base type). The power set is the set of all possible subsets 
of values of the base type including the empty set. Therefore, each 
possible value of a set type is a subset of the possible values of the 
base type. 

A variable of a set type can hold from none to all the values of the 
set. 

set type -@--@--l ordinal type ~ 

The base type must not have more than 256 possible values, and 
the ordinal values of the upper and lower bounds of the base type 
must be within the range 0 to 255. 

Every set type can hold the value [ ], which is called the empty set. 

A file type consists of a linear sequence of components of the 
component type, which can be of any type except a file type, any 
structured type with a file-type component, or an object type. The 
number of components isn't set by the file-type declaration. 

file type 

If the word of and the component type are omitted, the type 
denotes an untyped file. Untyped files are low-level I/O 
(input/output) channels primarily used for direct access to any 
disk file regardless of its internal format. 

The standard file type Text signifies a file containing characters 
organized into lines. Text files use special I/O procedures, which 
are discussed in Chapter 13, "Input and output." 

Language Guide 



Pointer types 

Type Pointer 

See Chapter 5$ section 
entitled "Pointers and 

dynamic variables" on page 
56 for the syntax of 

referencing the dynamic 
variable pointed to by a 

pointer variable. 

Type PChar 

Chapter 4, Types 

A pointer type defines a set of values that point to dynamic 
variables of a specified type called the base type. A pointer-type 
variable contains the memory address of a dynamic variable. 

pointer type -0--l base type ~ 

base type -I type identifier ~ 

If the base type is an undeclared identifier, it must be declared in 
the same type declaration part as the pointer type. 

You can assign a value to a pointer variable with the New proce­
dure, the @ operator, or the Ptr function. New allocates a new 
memory area in the application heap for a dynamic variable and 
stores the address of that area in the pointer variable. The @ 
operator directs the pointer variable to the memory area 
containing any existing variable or procedure or function entry 
point, including variables that already have identifiers. Ptr points 
the pointer variable to a specific memory address. 

The reserved word denotes a pointer-valued constant that doesn't 
point to anything. 

The predefined type Pointer denotes an untyped pointer; that is, a 
pointer that doesn't point to any specific type. Variables of type 
Pointer can't be dereferenced; writing the pointer symbol" after 
such a variable is an error. Generic pointers, however, can be 
typecast to allow dereferencing. Like the value denoted by the 
word nil, values of type Pointer are compatible with all other 
pointer types. 

Turbo Pascal has a predefined type, Pehar, to represent a pointer 
to a null-terminated string. The System unit declares pehar as 

type PChar = AChar; 

Turbo Pascal supports a set of extended syntax rules to facilitate 
handling of null-terminated strings using the pehar type. For a 
complete discussion of this topic, see Chapter 16, "Using null­
terminated strings." 
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Procedural types 

Procedural values 

44 

Standard Pascal regards procedures and functions as program 
parts that can be executed through procedure or function calls. 
Turbo Pascal has a much broader view of procedures and 
functions: It allows procedures and functions to be treated as 
entities that can be assigned to variables and passed as parame­
ters. Such actions are made possible through procedural types. 

A procedural-type declaration specifies the parameters and, for a 
function, the result type. 

procedural type 

formal parameter list 

In essence, the syntax for writing a procedural-type declaration is 
exactly the same as for writing a procedure or function header, 
except that the identifier after the procedure or function keyword 
is omitted. Some examples of procedural-type declarations follow: 

type 
Proc = procedure; 
SwapProc = procedure(var X, Y: Integer); 
StrProc = procedure(S: string); 
MathFunc = function(X: Real): Real; 
DeviceFunc = function(var F: Text): Integer; 
MaxFunc = function (A, B: Real; F: MathFunc): Real; 

The parameter names in a procedural-type declaration are purely 
- decorative-they have no effect on the declaration's meaning. 

Turbo Pascal doesn't let you declare functions that return proce­
dural-type values; a function result must be a string, real, integer, 
char, boolean, pointer, or user-defined enumeration-type value. 
But you can return the address of a procedure or function using a 
function result of type Pointer and then typecast it to the 
procedural type you desire. 

A variable of a procedural type can be assigned a procedural value. 
Procedural values can be one of these: 
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See "Procedural types in 
expressions" on page 44. 

Chapter 4, Types 

• The value nil 
• A variable reference of a procedural type 
• A procedure or function identifier 

In the context of procedural values, a procedure or function 
declaration can be viewed as a special kind of constant 
declaration, the value of the constant being the procedure or 
function. For example, given the following declarations: 

var 
P: SwapProc; 
F: MathFunc; 

procedure Swap(var A, B: Integer); far; 
var 

Temp: Integer; 
begin 

Temp := A; 
A := B; 
B := Temp; 

end; 

function Tan (Angle: Real); far; 
begin 

Tan := Sin(Angle) / Cos (Angle) ; 
end; 

the variables P and F can be assigned values as follows: 

P := Swap; 
F := Tan; 

and calls can be made using P and F as follows: 

P (I, J); 

X := F(X); 
{ Equivalent to Swap(I, J) } 
{ Equivalent to X := Tan(X) } 

Using a procedural variable that has been assigned the value nil in 
a procedure statement or a function call results in an error. nil is 
intended to indicate that a procedural variable is unassigned, and 
whenever there is a possibility that a procedural variable is nil, 
procedure statements or function calls involving that procedural 
variable should be guarded by a test: 

if @P <> nil then P(I, J); 

Notice the use of the @ operator to indicate that P is being ex­
amined rather than being called. 
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Type 
compatibility To be considered compatible, procedural types must have the 

same number of parameters, and parameters in corresponding 
positions must be of identical types. Finally, the result types of 
functions must be identical. Parameter names have no 
significance when determining procedural-type compatibility. 

The value nil is compatible with any procedural type. 

To be used as procedural values, procedures and functions must 
be declared with a far directive or compiled in the {$F+} state. 
Also, standard procedures and functions, nested procedures and 
functions, methods, inline procedures and functions, and interrupt 
procedures can't be used as procedural values. 

Standard procedures and functions are the ones declared by the 
System unit, such as WriteLn, ReadLn, Chr, and Ord. To use a 
standard procedure or function as a procedural value, write a 
"shell" around it. For example, the following function FSin is 
assignment-compatible with the MathFunc type declared above. 

function FSin(X: Real): Real; far; 
begin 

FSin : = Sin (X) ; 
end; 

A procedure or function is nested when it's declared within 
another procedure or function. Such nested procedures and 
functions can't be used as procedural values. 

Identical and compatible types 

Type identity 

46 

Two types can be the same, and this sameness (identity) is 
mandatory in some contexts. At other times, the two types need 
only be compatible or merely assignment-compatible. They are 
identical when they are declared with, or their definitions stem 
from, the same type identifier. 

Type identity is required only between actual and formal variable 
parameters in procedure and function calls. 
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Type 
compatibility 

Chapter 4, Types 

Two types-say, Tl and T2-are identical if one of the following 
is true: Tl and T2 are the same type identifier; Tl is declared to be 
equivalent to a type identical to T2. 

The second condition connotes that Tl doesn't have to be de­
clared directly to be equivalent to T2. The type declarations 

Tl = Integer; 
T2 = Tl; 
T3 = Integer; 
T4 = T2; 

result in Tl, T2, T3, T4, and Integer as identical types. The type 
declarations 

T5 = set of Integer; 
T6 = set of Integer; 

don't make T5 and T6 identical because set of Integer isn't a type 
identifier. Two variables declared in the same declaration, for 
example, 

Vl, V2: set of Integer; 

are of identical types-unless the declarations are separate. The 
declarations 

Vl: set of Integer; 
V2: set of Integer; 
V3: Integer; 
V4: Integer; 

mean V3 and V 4 are of identical type, but not Vl and V2. 

Compatibility between two types is sometimes required, such as 
in expressions or in relational operations. Type compatibility is 
important, however, as a precondition of assignment 
compatibility. 

Type compatibility exists when at least one of the following 
conditions is true: 

• Both types are the same. 

• Both types are real types. 

• Both types are integer types. 

• One type is a subrange of the other. 

• Both types are subranges of the same host type. 
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Assignment 
compatibility 

• Both. types are set types with compatible base types. 

• Both types are packed string types with an identical number of 
components. 

• One type is a string type and the other is either a string type, 
packed string type, or Char type. 

• One type is Pointer and the other is any pointer type. 

• One type is PChar and the other is a zero-based character array 
of the form array[O .. X] of Char. (This applies only when 
extended syntax is enabled with the {$X+} directive.) 

• Both types are pointers to identical types. (This applies only 
when type-checked pointers are enabled with the {$T +} 
directive.) 

• Both types are procedural types with identical result types, an 
identical number of parameters, and a one-to-one identity 
between parameter types. 

Assignment compatibility is necessary when a value is assigned to 
something, such as in an assignment statement or in passing 
value parameters. 

A value of type T2 is assignment-compatible with a type T1 (that 
is, T1 := T2 is allowed) if any of the following are True: 

• T1 and T2 are identical types and neither is a file type or a 
structured type that contains a file-type component at any level 
of structuring. 

• T1 and T2 are compatible ordinal types, and the values of type 
T2 falls within the range of possible values of T1. 

• T1 and T2 are real types, and the value of type T2 falls within the 
range of possible values of T l' 

• T1 is a real type, and T2 is an integer type. 

• T 1 and T 2 are string types. 

• T1 is a string type, and T2 is a Char type. 

• T1 is a string type, and T2 is a packed string type. 

• T1 and T2 are compatible, packed string types. 

• T1 and T2 are compatible set types, and all the members of the 
value of type T 2 fall within the range of possible values of T l' 

• T1 and T2 are compatible pointer types. 
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• T1 is a PChar and T2 is a string constant. (This applies only 
when extended syntax is enabled {$X+}.) 

• T1 is a PChar and T2 is a zero-based character array of the form 
array[O .. X] of Char. (This applies only when extended syntax is 
enabled {$X+}.) 

• T1 and T2 are compatible procedural types. 

• T1 is a procedural type, and T2 is a procedure or function with 
an identical result type, an identical number of parameters, and 
a one-to-one identity between parameter types. 

• T2 is assignment-compatible with an object type T1 if T2 is an 
object type in the domain of T l' 

• A pointer type P2, pointing to an object type T2, is assignment­
compatible with a pointer type P 1, pointing to an object type T 11 

if T 2 is' in the domain of T l' 

A compile-time error occurs when assignment compatibility is 
necessary and none of the items in the preceding list are true. 

The type declaration part 

Chapter 4, Types 

Programs, procedures, functions, and methods that declare types 
have a type declaration part. This is an example of a type declara­
tion part: 

type 
TRange = Integer; 
TNumber = Integer; 
TColor = (Red, Green, Blue); 
TCharVal = Ord('A') .. Ord('Z'); 
TTestIndex = 1 .. 100; 
TTestValue = -99 .. 99; 
TTestList = array [TTestIndexj of TTestValue; 
PTestList = ~TTestList; 
TDate = object 

Year: Integer; 
Month: 1. .12 ; 
Day: 1..31; 
procedure SetDate(D, M, Y: Integer); 
function ShowDate: String; 

end; 
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TMeasureData = record 
When: TDatei 
Count: TTestIndexi 
Data: PTestListi 

endi 
TMeasureList = array[1 .. 50] of TMeasureDatai 
TName = string[80]i 
TSex = (Male, Female)i 
PPersonData = ATPersonDatai 
TPersonData = record 

Name, FirstName: TNamei 
Age: Integeri 
Married: Booleani 
TFather, TChild, TSibling: PPersonDatai 
case S: TSex of 

endi 

Male: (Bearded: Boolean); 
Female: (Pregnant: Boolean)i 

TPersonBuf = array[O . . SizeOf(TPersonData)-l] of Byte; 
TPeople = file of TPersonDatai 

In the example, Range, Number, and Integer are identical types. 
TTestIndex is compatible and assignment-compatible with, but not 
identical to, the types Number, Range, and Integer. Notice the use 
of constant expressions in the declarations of TCharVal and 
TPersonBuf 
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5 

Variables and typed constants 

Variable declarations 

A variable is an identifier that marks a value that can change. A 
variable declaration is a list of identifiers that designate new 
variables and their types. 

variable declaration 

absolute clause 

The type given for the variable(s) can be a type identifier 
previously declared in a type declaration part in the same block, 
in an enclosing block, or in a unit; it can also be a new type 
definition. 

When an identifier is specified within the identifier list of a 
variable declaration, that identifier is a variable identifier for the 
block in which the declaration occurs. The variable can then be 
referred to throughout the block, unless the identifier is rede­
clared in an enclosed block. Redeclaration creates a new variable 
using the same identifier, without affecting the value of the 
original variable. 

An example of a variable declaration part follows: 

var 
X, Y, Z: Real; 
I, J, K: Integer; 
Digit: 0 .. 9; 
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The data 
segment 

For information on dynamic 
variables, see "Pointers and 

dynamic variables" on 
page 56. 

The stack 

C: Color; 
Done, Error: Boolean; 
Operator: (Plus, Minus, Times); 
Hue1, Hue2: set of Color; 
Today: Date; 
Results: MeasureList; 
P1, P2: Person; 
Matrix: array[1 .. 10, 1 .. 10] of Real; 

Variables declared outside procedures and functions are called 
global variables, and they reside in the data segment. Variables 
declared within procedures and functions are called local variables, 
and they reside in the stack segment. 

The maximum size of the data segment is 65,520 bytes. When a 
program is linked (this happens automatically at the end of the 
compilation of a program), the global variables of all units used 
by the program, as well as the program's own global variables, are 
placed in the data segment. 

If you need more than 65,520 bytes of global data, you should 
allocate the larger structures as dynamic variables. 

segment The size of the stack segment is set through a $M compiler 
directive-it can be anywhere from 1,024 to 65,520 bytes. The 
default stack-segment size is 16,384 bytes. 
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Each time a procedure or function is activated (called), it allocates 
a set of local variables on the stack. On exit, the local variables are 
. disposed of. At any time during the execution of a program, the 
total size of the local variables allocated by the active procedures 
and functions can't exceed the size of the stack segment. 

The $S compiler directive is used to include stack-overflow 
checks in the code. In the default {$S+} state, code is generated to 
check for stack overflow at the beginning of each procedure and 
function. In the {$S-} state, no such checks are performed. 

A stack overflow can cause a system crash, so don't turn off stack 
checks unless you're absolutely sure that an overflow will never 
occur. 
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Absolute 
variables 

Variable 

Variables can be declared to reside at specific memory addresses, 
and are then called absolute variables. The declaration of such 
variables must include an absolute clause following the type: 

The variable declaration's identifier list can only specify one 
identifier when an absolute clause is present. 

The first form of the absolute clause specifies the segment and 
offset at which the variable is to reside: 

CrtMode : Byte absblute $0040:$0049; 

The first constant specifies the segment base, and the second 
specifies the offset within that segment. Both constants must be 
within the range $0000 to $FFFF (0 to 65,535). 

The second form of the absolute clause is used to declare a 
variable "on top" of another variable, meaning it declares a 
variable that resides at the same memory address as another 
variable: 

var 
Str: string[32]; 
StrLen: Byte absolute Str; 

This declaration specifies that the variable StrLen should start at 
the same address as the variable Str, and because the first byte of 
a string variable contains the dynamic length of the string, StrLen 
will contain the length of Str. 

references A variable reference signifies one of the following: 

ill A variable 
• A component of a structured- or string-type variable 
• A dynamic variable pointed to by a pointer-type variable 
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This is the syntax of a variable reference: 

variable reference 

The syntax for a variable reference allows an expression that 
computes a pointer-type value. The expression must be followed 
by a qualifier that dereferences the pointer value (or indexes the 
pointer value if the extended syntax is enabled with the {$X+} 
directive) to produce an actual variable reference. 

A variable reference can contain zero or more qualifiers that 
modify the meaning of the variable reference. 

qualifier 

An array identifier with no qualifier, for example, references the 
entire array: 

Results 

An array identifier followed by an index denotes a specific 
component of the array-in this case, a structured variable: 

Results[Current + 1] 

With a component that is a record or object, the index can be 
followed by a field designator. Here the variable access signifies a 
specific field within a specific array component: 

Results[Current + 1] .Data 

The field designator in a pointer field can be followed by the 
pointer symbol (/\) to differentiate between the pointer field and 
the dynamic variable it points to: 

Results[Current + 1] .DataA 

If the variable being pointed to is an array, indexes can be added 
to denote components of this array: 

Results[Current + 1] .DataA[J] 
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Arrays, strings, and 
indexes 

A specific component of an array variable is denoted by a variable 
reference that refers to the array variable, followed by an index 
that specifies the component. 

A specific character within a string variable is denoted by a 
variable reference that refers to the string variable, followed by an 
index that specifies the character position. 

index ~ expression f--r-CD--
.... ------t01+1 ------I 

The index expressions select components in each corresponding 
dimension of the array. The number of expressions can't exceed 
the number of index types in the array declaration. Also, each 
expression's type must be assignment-compatible with the 
corresponding index type. 

When indexing a multidimensional array, multiple indexes or 
multiple expressions within an index can be used interchange­
ably. For example, 

Matrix [I] [J] 

is the same as 

Matrix[I, J] 

You can index a string variable with a single index expression, 
whose value must be in the range O .. N, where N is the declared 
size of the string. This accesses one character of the string value, 
with the type Char given to that character value. 

The first character of a string variable (at index 0) contains the 
dynamic length of the string; that is, Length(S) is the same as 
Ord(S[oJ). If a value is assigned to the length attribute, the 
compiler doesn't check whether this value is less than the 
declared size of the string. It's possible to index a string beyond its 
current dynamic length. The characters read are random and 
assignments beyond the current length don't affect the actual 
value of the string variable. 

When the extended syntax is enabled (using the {$X+} compiler 
directive), a value of type PChar can be indexed with a single 
index expression of type Word. The index expression specifies an 
offset to add to the character pointer before it's dereferenced to 
produce a Char type variable reference. 
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· Records and field 
designators 

Object component 
designators 

Pointers and dynamic 
variables 

56 

A specific field of a record variable is denoted by a variable 
reference that refers to the record variable, followed by a field 
designator specifying the field. 

field designator -()-l field identifier f--
These are examples of a field designator: 

Today.Year 
Results[l] .Count 
Results [1] . When.Month 

In a statement within a with statement, a field designator doesn't 
have to be preceded by a variable reference to its containing 
record. 

The format of an object component designator is the same as that 
of a record field designator; that is, it consists of an instance (a 
variable reference), followed by a period and a component identi­
fier. A component designator that designates a method is called a 
method designator. A with statement can be applied to an instance 
of an object type. In that case, the instance and the period can be 
omitted in referencing components of the object type. 

The instance and the period can also be omitted within any 
method block, and when they are, the effect is the same as if Self 
and a period were written before the component reference. 

The value of a pointer variable is either nil or the address of a 
dynamic variable. 

The dynamic variable pointed to by a pointer variable is refer­
enced by writing the pointer symbol (/\) after the pointer variable. 

You create dynamic variables and their pointer values with the 
procedures New and GetMem. You can use the @ (address-of) 
operator and the function Ptr to create pointer values that are 
treated as pointers to dynamic variables. 

nil doesn't point to any variable. The results are undefined if you 
access a dynamic variable when the pointer's value is nil or 
undefined. These are examples of references to dynamic variables: 

Pi" 
Pl".Sibling" 
Results[l] .Data" 
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Variable 
typecasts 

The programmer is 
responsible for determining 

the validity of a typecast. 

A variable reference of one type can be changed into a variable 
reference of another type through a variable typecast. 

variable typecast 

type identifier variable reference 

When a variable typecast is applied to a variable reference, the 
variable reference is treated as an instance of the type specified by 
the type identifier. The size of the variable (the number of bytes 
occupied by the variable) must be the same as the size of the type 
denoted by the type identifier. A variable typecast can be followed 
by one or more qualifiers, as allowed by the specified type. 

These are examples of variable typecasts: 

type 
TByteRec = record 

La, Hi: Byte; 
end; 
TWordRec = record 

Low, High: Word; 
end; 
TPtrRec = record 

Ofs, Seg: Word; 
end; 
PByte = "Byte; 

var 
B: Byte; 
W: Word; 
L: Longint; 
P: Pointer; 

begin 
W := $1234; 
B := TByteRec(W) .Lo; 
TByteRec(W) .Hi := 0; 
L := $01234567; 
W := TWordRec(L) .Low; 
B := TByteRec (TWordRec (L) .Low) .Hi; 
B := PByte(L)"; 
P := Ptr($40,$49); 
W := TPtrRec(P) .Seg; 
Inc (TPtrRec (P) .Ofs, 4); 

end. 
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Notice the use of the TByteRec type to access the low- and high­
order bytes of a word. This corresponds to the built-in functions 
Lo and Hi, except that a variable typecast can also be used on the 
left side of an assignment. Also, observe the use of the TWordRec 
and TPtrRec types to access the low- and high-order words of a 
long integer and the offset and segment parts of a pointer. 

Turbo Pascal fully supports variable typecasts involving 
procedural types. For example, given the declarations 

type 
Func = function {X: Integer): Integer; 

var 
F: TFunc; 
P: Pointer; 
N: Integer; 

you can construct the following assignments: 

F : = Func ( P) ; 
Func{P) := F; 
@F := P; 

P := @F; 

N := F(N); 

N : = Func (P) (N) ; 

{ Assign procedural value in P to F } 
{ Assign procedural value in F to P } 

{ Assign pointer value in P to F } 
{ Assign pointer value in F to P } 

{ Call function via F } 
{ Call function via P } 

In particular, notice that the address operator (@), when applied 
to a procedural variable, can be used on the left side of an 
assignment. Also, notice the typecast on the last line to call a 
function via a pointer variable. 

Typed constants 
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Typed constants can be compared to initialized variables­
variables whose values are defined on entry to their block. Unlike 
an untyped constant, the declaration of a typed constant specifies 
both the type and the value of the constant. 

typed constant declaration 

L-I identifier ~ typed constant ~ 
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Simple-type 
constants 

typed constant -~-+I 
::======---------. 

procedural constant 

Typed constants can be used exactly like variables of the same 
type, and can appear on the left-hand side in an assignment state­
ment. Note that typed constants are initialized only once-at the 
beginning of a program. Therefore, for each entry to a procedure 
or function, the locally-declared typed constants aren't 
reinitialized. 

In addition to a normal constant expression, the value of a typed 
constant can be specified using a constant-address expression. A 
constant-address expression is an expression that involves taking 
the address, offset, or segment of a global variable, a typed con­
stant, a procedure, or a function. Constant-address expressions 
can't reference local variables (stack based) or dynamic (heap­
based) variables, because their addresses can't be computed at 
compile time. 

Declaring a typed constant as a simple type specifies the value of 
the constant: 

const 
Maximum: Integer = 9999; 
Factor: Real = -0.1; 
Breakchar: Char = #3; 

As mentioned earlier, the value of a typed constant can be 
specified using a constant-address expression, that is, an 
expression that takes the address, offset, or segment of a global 
variable, a typed constant, a procedure, or a function. For 
example, 

var 
Buffer: array[O .. 1023] of Byte; 

const 
BufferOfs: Word = Ofs(Buffer); 
BufferSeg: Word = Seg(Buffer); 
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String-type 
constants 

Structured-type 
constants 

Array-type constants 

Because a typed constant is actually a variable with a constant 
value, it can't be interchanged with ordinary constants. For 
example, it can't be used in the declaration of other constants or 
types: 

const 
Min: Integer = 0; 
Max: Integer = 99; 

type 
TVector = array [Min .. Max] of Integer; 

The TVector declaration is invalid, because Min and Max are typed 
constants. 

The declaration of a typed constant of a string type specifies the 
maximum length of the string and its initial value: 

const 
Heading: string[7] = 'Section'; 
NewLine: string[2] = #13#10; 
TrueStr: string[5] = 'Yes'; 
FalseStr: string[5] = 'No'; 

The declaration of a structured-type constant specifies the value 
of each of the structure's components. Turbo Pascal supports the 
declaration of array, record, object, and set-type constants. File­
type constants and constants of array, record, and object types 
that contain file-type components aren't allowed. 

The declaration of an array-type constant specifies the values of 
the components. The values are enclosed in parentheses and 
separated by commas. 

array constant -cD-r' typed constant ~ 
...... --~O)+o----.I 

This is an example of an array-type constant: 

type 
TStatus = (Active, Passive, Waiting); 
TStatusMap = array[Status] of string[7]; 

const 
StatStr: TStatusMap = ('Active', 'Passive', 'Waiting'); 
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For more about nul/­
terminated strings, see 

Chapter 76. 

This example defines the array constant StatStr, which can be 
used to convert values of type TStatus into their corresponding 
string representations. These are the components of StatStr: 

StatStr[Active] = 'Active' 
StatStr[Passive] = 'Passive' 
StatStr[Waiting] = 'Waiting' 

The component type of an array constant can be any type except a 
file type. Packed string-type constants (character arrays) can be 
specified both as single characters and as strings. The definition 

const 
Digits: array[0 .. 9] of Char = ('0', '1', '2', '3', '4', '5', 

'6', '7', , 8', '9'); 

can be expressed more conveniently as 

const 
Digits: array[0 .. 9] of Char = '0123456789'; 

When the extended syntax is enabled (using a {$X+} compiler 
directive), a zero-based character array can be initialized with a 
string that is shorter than the declared length of the array. For 
example, 

const 
FileName = array[O .. 79] of Char = 'TEST.PAS'; 

In such cases, the remaining characters are set to NULL (#0) and 
the array effectively contains a null-terminated string. 

Multidimensional-array constants are defined by enclosing the 
constants of each dimension in separate sets of parentheses, 
separated by commas. The innermost constants correspond to the 
rightmost dimensions. The declaration 

type 
Cube = array[O .. l, 0 .. 1, 0 .. 1] of Integer; 

const 
Maze: Cube = (( (0, 1), (2, 3)), (( 4, 5), (6, 7))); 

provides an initialized array Maze with the following values: 

Maze[O, 0, 0] = 0 
Maze[O, 0, 1] = 1 
Maze[O, 1, 0] = 2 
Maze[O, 1, 1] = 3 
Maze[l, 0, 0] = 4 
Maze[l, 0, 1] = 5 
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Maze[l, 1, 0] = 6 
Maze[l, 1, 1] = 7 

Record-type constants The declaration of a record-type constant specifies the identifier 
and value of each field, enclosed in parentheses and separated by 
semicolons. 

record constant 
L.cD-C-f-ie-ld-id-e-nt-ifi-er---'~ typed constant TeD--
These are examples of record constants: 

type 
TPoint = record 

~, Y: Real; 
end; 
TVector = array[O . . 1] of Point; 
TMonth = (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, 

Nov, Dec); 
TDate = record 

D: 1. .31; 
M: Month; 
Y: 1900 .. 1999; 

end; 
const 

Origin: TPoint = (X: 0.0; Y: 0.0); 
Line: TVector = ((X: -3.1; Y: 1.5), (X: 5.8; Y: 3.0)); 
SomeDay: TDate = (D: 2; M: Dec; Y: 1960); 

The fields must be specified in the same order as they appear in 
the definition of the record type. If a record contains fields of file 
types, the constants of that record type can't be declared. If a 
record contains a variant, only fields of the selected variant can be 
specified. If the variant contains a tag field, then its value must be 
specified. 

Object-type constants The declaration of an object-type constant uses the same syntax as 
the declaration of a record-type constant. No value is, or can be, 
specified for method components. Referring to the earlier object­
type declarations starting on page 34, these are examples of 
object-type constants: 
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const 
ZeroPoint: TPoint = (X: Oi Y: O)i 
ScreenRect: TRect = (A: (X: Oi Y: 0) i B: (X: 80i Y: 25)); 
CountField: TNumField = (X: 5; Y: 20i Len: 4; Name: nili 

Value: 0; Min: -999; Max: 999)i 

Constants of an object type that contains virtual methods need not 
be initialized through a constructor call-this initialization is 
handled automatically by the compiler. 

Set-type constants Just like a simple-type constant, the declaration of a set-type 
constant specifies the value of the set using a constant expression. 
Here are some examples: 

Pointer-type 
constants 

type 
Digits = set of O •• 9; 
Letters = set of 'A' .. 'Z'; 

const 
EvenDigits: Digits = [0, 2, 4, 6, 8]; 
Vowels: Letters = ['A', 'E', 'I', '0', lUI, 'Y']i 

HexDigits: set of 'O' .. 'z' = ['0' .. '9', 'A' .. 'F', 'a' ... f']i 

The declaration of a pointer-type constant uses a constant-address 
expression to specify the pointer value. Some examples follow: 

type 
TDirection = (Left, Right, Up, Down); 
TStringptr = AString; 
PNode = ATNode; 
TNode = record 

Next: PNode; 
Symbol: TStringPtr; 
Value: TDirection; 

end; 

const 
Sl: string[4] , DOWW i 
S2: string[2] 'UP'i 
S3: string [5] 'RIGHT'i 
S4: string [4] 'LEFT'i 
N1: TNode = (Next: nili 
N2: TNode = (Next: @Nl; 
N3: TNode = (Next: @N2i 
N4: TNode = (Next: @N3; 

Symbol: 
Symbol: 
Symbol: 
Symbol: 

DirectionTable: PNode = @N4; 

@Sli 
@S2; 
@S3i 
@S4; 

Value: Down) i 
Value: Up) ; 
Value: Right) ; 
Value: Left) ; 
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Procedural-type 
constants 

When the extended syntax is enabled (using a {$X+} compiler 
directive), a typed constant of type PChar can be initialized with a 
string constant. For example, 

const 
Message: PChar = 'Program terminated'; 
Prompt: PChar = 'Enter values: '; 
Digits: array[O .. 9) of PChar = ( 

'Zero', 'One', 'Two', 'Three', 'Four', 
'Five', 'Six', 'Seven', 'Eight', 'Nine'); 

The result is that the pointer now points to an area of memory 
that contains a zero-terminated copy of the string literal. See 
Chapter 16, "Using null-terminated strings," for more 
information. 

A procedural-type constant must specify the identifier of a proce­
dure or function that is assignment-compatible with the type of 
the constant, or it must specify the value nil. 

procedural constant 

Here's an example: 

type 
TErrorProc = procedure (ErrorCode: Integer); 

procedure DefaultError(ErrorCode: Integer); far; 
begin 

WriteLn('Error " ErrorCode, , .'); 
end; 

const 
ErrorHandler: TErrorProc = DefaultError; 
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Table 6.1 
Precedence of operators 

Chapter 6, Expressions 

A p T E R 

6 

Expressions 
Expressions are made up of operators and operands. Most Pascal 
operators are binary; they take two operands. The rest are unary 
and take only one operand. Binary operators use the usual 
algebraic form (for example, A + B). -A unary operator always 
precedes its operand (for example, -B). 

In more complex expressions, rules of precedence clarify the order 
in which operations are performed. 

Operators Precedence Categories 

@,not first (high) unary operators 

*, /, diY, mod, and, second multiplying operators 
shl, shr 

+,., or, xor third adding operators 

=, <>, <, >, <=, >=, in fourth (low) relational operators 

There are three basic rules of precedence: 

• An operand between two operators of different precedence is 
bound to the operator with higher precedence. 

• An operand between two equal operators is bound to the one 
on its left. 

• Expressions within parentheses are evaluated prior to being 
treated as a single operand. 
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Operations with equal precedence are normally performed from 
left to right, although the compiler may rearrange the operands to 
generate optimum code. 

Expression syntax 

66 

The precedence rules follow from the syntax of expressions, 
which are built from factors, terms, and simple expressions. 

A factor's syntax follows: 

factor variable reference 

unsigned constant f-----------t 

value typecast f-------------t 
address factor f---------------' 

A function call activates a function and denotes the value 
returned by the function. See "Function calls" on page 76. 

A set constructor denotes a value of a set type. See "Set 
constructors" on page 76. 

A value typecast changes the type of a value. See "Value 
typecasts" on page 77. 

An address factor computes the address of a variable, procedure, 
function, or method. See "The @ operator" on page 75. 

An unsigned constant has the following syntax: 

unsigned constant unsigned number 

character string 
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Chapter 6, Expressions 

These are some examples of factors: 

x 
@X 
15 
(X + Y + Z) 
Sin(X / 2) 
exi t [ I 0 I •• I 9 I I I A I •• I Z I 1 
not Done 
Char(Digit + 48) 

{ Variable reference 
Pointer to a variable 

Unsigned constant 
{ SUbexpression 
{ Function call 
Set constructor 

Negation of a Boolean 
{ Value typecast 

Terms apply the multiplying operators to factors: 

term 

Here are some examples of terms: 

x * Y 
Z / (1 - Z) 

Y shl 2 
(X <= Y) and (Y < Z) 

Simple expressions apply adding operators and signs to terms: 

simple expression 

Here are some examples of simple expressions: 

X + Y 
-x 
Hue1 + Hue2 
I * J + 1 

An expression applies the relational operators to simple 
expressions: 
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Operators 

Arithmetic 

expression 

simple expression Jr--:::::::::-----;:::======:;-r-
~---,.~-.j simple expression 

Here are some examples of expressions: 

x = 1.5 
Done <> Error 
(I < J) = (J < K) 
C in Huel 

Operators are classified as arithmetic operators, logical operators, 
string operators, character-pointer operators, set operators, 
relational operators, and the @ operator. 

operators The following tables show the types of operands and results for 
binary and unary arithmetic operations. 

Table 6.2 
Binary arithmetic operations 

The + operator is a/so used as 
a string or set operator, and 

the +, -, and * operators are 
a/so used as set operators. 
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Operator Operation 

+ addition 

subtraction 

* multiplication 

div 

mod 

division 

integer division 

remainder 

Operand types Result type 

integer type integer type 
real type real type 

integer type integer type 
real type real type 

integer type integer type 
real type real type 

integer type real type 
real type real type 

integer type integer type 

integer type integer type 
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Table 6.1 
Unary arithmetic operations 

For a definition of common 
types, see page 25. 

Logical operators 

Chapter 6, Expressions 

Operator Operation 

+ sign identity 

sign negation 

Operand types 

integer type 
real type 

integer type 
real type 

Result type 

integer type 
real type 

integer type 
real type 

Any operand whose type is a subrange of an ordinal type is 
treated as if it were of the ordinal type. 

If both operands of a +, -, *, div, or mod operator are of an integer 
type, the result type is of the common type of the two operands. 

If one or both operands of a +, -, or * operator are of a real type, 
the type of the result is Real in the {$N-} state or Extended in the 
{$N+} state. 

If the operand of the sign identity or sign negation operator is of 
an integer type, the result is of the same integer type. If the 
operator is of a real type, the type of the result is Real or Extended. 

The value of X / Y is always of type Real or Extended regardless of 
the operand types. A run-time error occurs if Y is zero. 

The value of I div J is the mathematical quotient of I / J, rounded 
in the direction of zero to an integer-type value. A run-time error 
occurs if J is zero. 

The mod operator returns the remainder obtained by dividing its 
two operands; that is, 

I mod J = I - (I div J) * J 

The sign of the result of mod is the same as the sign of I. A run­
time error occurs if J is zero. 

The types of operands and results for logical operations are 
shown in Table 6.4. 
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Table 6.4 
Logical operations 

The not operator is a unary 
operator. 

Boolean 

Operator Operation Operand types Result type 

not bitwise negation integer type Boolean 
and bitwise and integer type Boolean 
or bitwise or integer type Boolean 
xor bitwise xor integer type Boolean 
shl shift left integer type Boolean 
shr shift right integer type Boolean 

If the operand of the not operator is of an integer type, the result 
is of the same integer type. 

If both operands of an and, or, or xor operator are of an integer 
type, the result type is the common type of the two operands. 

The operations I shl J and I shr J shift the value of I to the left right 
by J bits. The result type is the same as the type of I. 

operators The types of operands and results for Boolean operations are 
shown in Table 6.5. 

Table 6.5 
Boolean operations 

The not operator is a unary 
operator. 

Operator Operation Operand types Result type 

not negation Boolean type Boolean 
and logical and Boolean type Boolean 
or logical or Boolean type Boolean 
xor logical xor Boolean type Boolean 

Normal Boolean logic governs the results of these operations. For 
instance, A and B is True only if both A and B are True. 

Turbo Pascal supports two different models of code generation 
for the and and or operators: complete evaluation and short­
circuit (partial) evaluation. 

Complete evaluation means that every operand of a Boolean 
expression built from the and and or operators is guaranteed to be 
evaluated, even when the result of the entire expression is already 
known. This model is convenient when one or more operands of 
an expression are functions with side effects that alter the 
meaning of the program. 

Short-circuit evaluation guarantees strict left-to-right evaluation 
and that evaluation stops as soon as the result of the entire 
expression becomes evident. This model is convenient in most 
cases because it guarantees minimum execution time, and usually 
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String operator 

Table 6.6 
String operation 

Character-

minimum code size. Short-circuit evaluation also makes possible 
the evaluation of constructs that would not otherwise be legal. For 
example, 

while (I <= Length(S)) and (S[I] <> ' ') do 
Inc (I); 

while (P <> nil) and (pA.Value <> 5) do 
p := PA.Next; 

In both cases, the second test is not evaluated if the first test is 
False. 

The evaluation model is controlled through the $B compiler 
directive. The default state is {$B-}, and in this state, the compiler 
generates short-circuit evaluation code. In the {$B+} state, the 
compiler generates complete evaluation. 

Because Standard Pascal doesn't specify which model should be 
used for Boolean expression evaluation, programs dependent on 
either model are not truly portable. You may decide, however, 
that sacrificing portability is worth the gain in execution speed 
and simplicity provided by the short-circuit model. 

The types of operands and results for string operation are shown 
in Table 6.6. 

Operator Operation Operand types Result type 

+ concatenation string type, string type 
Char type, or 
packed string type 

Turbo Pascal allows the + operator to be used to concatenate two 
string operands. The result of the operation 5 + T, where Sand T 
are of a string type, a Char type, or a packed string type, is the 
concatenation of 5 and T. The result is compatible with any string 
type (but not with Char types and packed string types). If the 
resulting string is longer than 255 characters, it's truncated after 
character 255. 

pointer operators The extended syntax (enabled using a {$X+} compiler directive) 
supports a number of character-pointer operations. The plus (+) 
and minus (-) operators can be used to increment and decrement 
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Table 6.7 
Permitted PChar constructs 
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Set operators 

Table 6.8 
Set operations 

the offset part of a pointer value, and the minus operator can be 
used to calculate the distance (difference) between the offset parts 
of two character pointers. Assuming that P and Q are values of 
type PChar and I is a value of type Word, these constructs are 
allowed: 

Operation Result 

P + I Add I to the offset part of P 
I + P Add I to the offset part of P 
P - I Subtract I from the offset part of P 
P - Q Subtract offset part of Q from offset part of P 

The operations P + I and I + P adds I to the address given by P, 
producing a pointer that points I characters after P. The operation 
P - I subtracts I from the address given by P, producing a pointer 
that points I characters before P. 

The operation P - Q computes the distance between Q (the lower 
address) and P (the higher address), resulting in a value of type 
Word that gives the number of characters between Q and P. This 
operation assumes that P and Q point within the same character 
array. If the two character pointers point into different character 
arrays, the result is undefined. 

The types of operands for set operations are shown in Table 6.8. 

Operator 

+ 

* 

Operation 

union 
difference 
intersection 

Operand types 

compatible set types 
compatible set types 
compatible set types 

The results of set operations conform to the rules of set logic: 

• An ordinal value C is in A + B only if C is in A or B. 

• An ordinal value C is in A - B only if C is in A and not in B. 

• An ordinal value C is in A * B only if C is in both A and B. 

If the smallest ordinal value that is a member of the result of a set 
operation is A and the largest is B, then the type of the result is 
set of A .. B. 
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Relational 
operators 

Table 6.9 
Relational operations 

Comparing simple 
types 

Chapter 6, Expressions 

The types of operands and results for relational operations are 
shown in Table 6.9. 

Operator type Operation Operand types Result type 

= equal compatible simple, Boolean 
pointer, set, string, 
or packed string types 

<> not equal compatible simple, Boolean 
pointer, set, string, 
or packed string types 

< less than compatible simple, Boolean 
string, packed 
string types, or 
PChar 

> greater than compatible simple, Boolean 
string, packed 
string types, or 
PChar 

<= less than compatible simple, Boolean 
or equal to string, packed 

string types, or 
PChar 

>= greater than compatible simple, Boolean 
or equal to string, or packed 

string types, or 
PChar 

<= subset of compatible set types Boolean 

>= superset of compatible set types Boolean 

in member of left operand, any Boolean 
ordinal type T; 
right operand, set 
whose base is 
compatible with T 

When the operands =, <>, <, >, >=, or <= are of simple types, they 
must be compatible types; however, if one operand is of a real 
type, the other can be of an integer type. 
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Comparing strings 

Comparing packed 
strings 

Comparing pointers 

Comparing character 
pointers 

Comparing sets 
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The relational operators =, <>, <, >, >=, and <= compare strings 
according to the ordering of the extended ASCII character set. 
Any two string values can be compared because all string values 
are compatible. 

A character-type value is compatible with a string-type value. 
When the two are compared, the character-type value is treated as 
a string-type value with length 1. When a packed string-type 
value with N components is compared with a string-type value, 
it's treated as a string-type value with length N. 

The relational operators =, <>, <, >, >=, and <= can also be used to 
compare two packed string-type values if both have the same 
number of components. If the number of components is N, then 
the operation corresponds to comparing two strings, each of 
lengthN. 

The operators = and <> can be used on compatible pointer-type 
operands. Two pointers are equal only if they point to the same 
object. 

The extended syntax (enabled using a {$X+} compiler directive) 
allows the >, <, >=, and <= operators to be applied to PChar 
values. Note, however, that these relational tests assume that the 
two pointers being compared point within the same character array, 
and for that reason, the operators only compare the offset parts of 
the two pointer values. If the two character pointers point into 
different character arrays, the result is undefined. 

If A and B are set operands, their comparisons produce these 
results: 

• A = B is True only if A and B contain exactly the same members; 
otherwise, A <> B. 

• A <= B is True only if every member of A is also a member of B. 

• A >= B is True only if every member of B is also a member of A. 
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Testing set membership The in operator returns True when the value of the ordinal-type 
operand is a member of the set-type operand; otherwise, it returns 
False. 

The @ operator 

@ with a variable 

Special rules apply to use of 
the @ operator with a 

procedural variable. For 
more details, see 

"Procedural types in 
expressions" on page 78. 

@ with a procedure, 
function, or method 

Chapter 6, Expressions 

The @ operator is used in an address factor to compute the 
address of a variable, procedure, function, or method. 

address factor :--r----+I variable reference 

procedure identifier 

function identifier 

The @ operator returns the address of its operand, that is, it 
constructs a pointer value that points to the operand. 

When applied to a variable reference, @ returns a pointer to the 
variable. The type of the resulting pointer value is controlled 
through the $T compiler directive: in the {$T-} state (the default), 
the result type is Pointer. In other words, the result is an untyped 
pointer, which is compatible with all other pointer types. In the 
{$T +} state, the type of the result is AT, where Tis the type of the 
variable reference. In other words, the result is of a type that is 
compatible only with other pointers to the type of the variable. 

You can apply @ to a procedure, function, or method to produce a 
pointer to the routine's entry point. The type of the resulting 
pointer is always Pointer, regardless of the state of the $T compiler 
directive. In other words, the result is always an untyped pointer, 
which is compatible with all other pointer types. 

When @ is applied to a method, the method must be specified 
through a qualified-method identifier (an object-type identifier, 
followed by a period, followed by a method identifier). 
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Function calls 

See "Method activations" on 
page 40, "Qualified-method 

activations" on page 41, and· 
"Procedural types" on 

page 44. 

Set constructors 

76 

A function call activates a function specified by a function 
identifier, a method designator, a qualified-method designator, or 
a procedural-type variable reference. The function call must have 
a list of actual parameters if the corresponding function 
declaration contains a list of formal parameters. Each parameter 
takes the place of the corresponding formal parameter according 
to parameter rules explained in Chapter 9, "Procedures and 
functions," on page 107. 

function call 

function identifier 

method designator 
actual parameter list 

variable reference 

actual parameter list -CD---r:1 actual parameter TeD--
~---------~()~I-----~ 

actual parameter expression i-------r-­

variable reference 

Some examples of function calls follow: 

Sum(A, 63) 
Maximum {147 , J) 

Sin(X + Y) 
Eof (F) 

Volume (Radius, Height) 

In the extended syntax {$X+} mode, function calls can be used as 
statements; that is, the result of a function call can be discarded. 

A set constructor denotes a set-type value, and is formed by 
writing expressions within brackets ([D. Each expression denotes 
a value of the set. 
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Value typecasts 

See "Variable typecasts" on 
page 57. 

Chapter 6, Expressions 

set constructor -(Df--"lr---;:==========::;---,---' CD-­T! member group ~ 
L..----<Ol+I---..... 

member group -l expression I-r---:::::::::----;:======::::;-,-+ Lo-l expression f---1 
The notation [ ] denotes the empty set, which is assignment­
compatible with every set type. Any member group X .. Y denotes 
as set members all values in the range X .. Y. If X is greater than Y, 
then X .. Y doesn't denote any members and [X .. Y] denotes the 
empty set. 

All expression values in member groups in a particular set 
constructor must be of the same ordinal type. 

These are some examples of set constructors: 

[red, C, green) 

[1, 5, 10 .. K mod 12, 23) 
['A' .. 'Z', 'a' .. 'z', Chr(Digit + 48)) 

The type of an expression can be changed to another type through 
a value typecast. 

value typecast -I type identifier r--cIH expression KD-
The expression type and the specified type must both be either 
ordinal types or pointer types. For ordinal types, the resulting 
value is obtained by converting the expression. The conversion 
may involve truncation or extension of the original value if the 
size of the specified type is different from that of the expression. 
In cases where the value is extended, the sign of the value is 
always preserved; that is, the value is sign-extended. 

The syntax of a value typecast is almost identical to that of a 
variable typecast. Value typecasts operate on values, however, not 
on variables, and therefore they can't particIpate in variable 
references; that is, a value typecast can't be followed by qualifiers. 
In particular, value typecasts can't appear on the left side of an 
assignment statement. 
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These are some examples of value typecasts: 

Integer (' A') 
Char (48) 
Boolean(O) 
Color(2) 
Longint(@Buffer) 
BytePtr(Ptr($40 , $49)) 

Procedural types in expressions 
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Usually, using a procedural variable in a statement or an 
expression calls the procedure or function stored in the variable. 
There is one exception: When the compiler sees a procedural 
variable on the left side of an assignment statement, it knows that 
the right side has to represent a procedural value. For example, 
consider the following program: 

type 
IntFunc = function: Integer; 

var 
F: IntFunc; 
N: Integer; 

function ReadInt: Integer; far; 
var 

I: Integer; 
begin 

Read(I) ; 
ReadInt : = I; 

end; 

begin 
F := ReadInt; 
N := ReadInt; 

end. 

{ Assign procedural value } 
{ Assign function result } 

The first statement in the main program assigns the procedural 
value (address of) Readlnt to the procedural variable F, where the 
second statement calls Readlnt and assigns the returned value to 
N. The distinction between getting the procedural value or calling 
the function is made by the type of the variable being assigned (F 
or N). 

Unfortunately, there are situations where the compiler can't 
determine the desired action from the context. For example, in the 
following statement there is no obvious way the compiler can 
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know if it should compare the procedural value in F to the 
procedural value of Readlnt to determine if F currently points to 
Readlnt, or if it should call F and Readlnt and then compare the 
returned values. 

if F = ReadInt then 
WriteLn('Equal') ; 

Standard Pascal syntax, however, specifies that the occurrence of 
a function identifier in an expression denotes a call to that 
function, so the effect of the preceding statement is to call F and 
Readlnt, and then compare the returned values. To compare the 
procedural value in F to the procedural value of Readlnt, the 
following construct must be used: 

if @F = @ReadInt then 
Writeln('Equal'); 

When applied to a procedural variable or a procedure or function 
identifier, the address (@) operator prevents the compiler from 
calling the procedure, and at the same time converts the argument 
into a pointer. @F converts F into an untyped pointer variable that 
contains an address, and @Readlnt returns the address of Readlnt; 
the two pointer values can then be compared to determine if F 
currently refers to Readlnt. 

The @ operator is often used when assigning an untyped pointer 
value to a procedural variable. Here is an example: 

procedure SorneProc; 
begin 

end; 

var 
SornePtr: Pointer; 

begin 

SornePtr := @SorneProc; 

end. 

To get the memory address of a procedural variable rather than 
the address stored in it, use a double address (@@) operator. For 
example, where @P means convert P into an untyped pointer 
variable, @@P means return the physical address of the variable P. 
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Statements 

Statements describe algorithmic actions that can be executed. 
Labels can prefix statements, and these labels can be referenced 
by goto statements. 

statement Ir-;:::::==::;--::::~TT---;:============:;--r-­
simple statement 

A label is either a digit sequence in the range 0 to 9999 or an 
identifier. 

There are two main types of statements: simple statements and 
structured statements. 

Simple statements 

Chapter 7, Statements 

A simple statement is a statement that doesn't contain any other 
statements. 

simple statement assignment statement 
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Assignment 
statements 

See the section "Type 
compatibility" on page 47. 

Object-type 
assignments 

Procedure 
statements 

See Chapter 9, "Procedures 
and functions. " 
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Assignment statements replace the current value of a variable 
with a new value specified by an expression. They can be used to 
set the return value of the function also. 

assignment statement 

variable reference 

function identifier 

The expression must be assignment-compatible with the type of 
the variable or the type of the function result. 

These are examples of assignment statements: 

X := Y + Zi 
Done := (I >= 1) and (I < 100)i 
Hue1 := [Blue, SuCC(C)li 
I := Sqr(J) - I * Ki 

The rules of object-type assignment compatibility allow an 
instance of an object type to be assigned an instance of any of its 
descendant types. Such an assignment constitutes a projection of 
the descendant onto the space spanned by its ancestor. In the 
example code starting on page 34, given an instance F of type 
TField and an instance Z of type TZipField, the assignment F := Z 
copies only the fields X, Y, Len, and Name. 

Assigning as instance of an object doesn't initialize the instance. 
Referring to the preceding example, the assignment F := Z doesn't 
mean that a constructor call for F can be omitted. 

A procedure statement activates a procedure specified by a 
procedure identifier, a method designator, a qualified method 
designator, or a procedural-type variable reference. If the 
corresponding procedure declaration contains a list of formal 
parameters, then the procedure statement must have a matching 
list of actual parameters (parameters listed in definitions are 
formal parameters; in the calling statement, they are actual 
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Goto statements 

Good programming 
practices recommend that 
you use goto statements as 

little as possible. 

parameters). The actual parameters are passed to the formal 
parameters as part of the call. 

procedure statement 

procedure identifier r------:nr-;:::============::::;-f­
method designator 

actual parameter list 

variable reference 

Some examples of procedure statements follow: 

PrintHeadingi 
Transpose (A, N, M)i 

Find (Name, Address)i 

A goto statement transfers program execution to the statement 
marked by the specified label. The syntax diagram of a goto 
statement follows: 

goto statement ~ 

When using goto statements, observe the following rules: 

• The label referenced by a goto statement must be in the same 
block as the goto statement. In other words, it's not possible to 
jump into or out of a procedure or function. 

• Jumping into a structured statement from outside that 
structured statement (that is, jumping to a deeper level of 
nesting) can have undefined effects, although the compiler 
doesn't indicate an error. For example, you shouldn't jump into 
the middle of a for loop. 

Structured statements 

Chapter 7, Statements 

Structured statements are constructs composed of other 
statements that are to be executed in sequentially (compound and 
with statements), conditionally (conditional statements), or 
repeatedly (repetitive statements). 
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Compound 
statements 

Conditional 

structured statement -~-+l compound statement 

The compound statement specifies that its component statements 
are to be executed in the same sequence as they are written. The 
component statements are treated as one statement, crucial in 
contexts where the Pascal syntax only allows one statement. begin 
and end bracket the statements, which are separated by 
semicolons. 

compound statement 

Here's an example of a compound statement: 

begin 
Z := Xi 

X := Yi 
Y := Zi 

endi 

statements A conditional statement selects for execution a single one (or 
none) of its component statements. 

conditional statement 

If statements The syntax for an if statement reads like this: 

The expression must yield a result of the standard type Boolean. If 
the expression produces the value True, then the statement 
following then is executed. 
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Note: No semicolon is 
allowed preceding an else 

clause. 

If the expression produces False and the else part is present, the 
statement following else is executed; if the else part isn't present, 
execution continues at the next statement following the if 
statement. 

The syntactic ambiguity arising from the construct 

if e1 then if e2 then 81 else 82; 

is resolved by interpreting the construct as follows: 

if e1 then 
begin 

if e2 then 
81 

else 
82 

end; 

Usually, an else is associated with the closest if not already 
associated with an else. 

Two examples of if statements follow: 

if x < 1. 5 then 
Z := X + Y 

else 
Z := 1.5; 

if P1 <> nil then 
P1 := P1 A .Father; 

Case statements The case statement consists of an expression (the selector) and a 
list of statements, each prefixed with one or more constants 
(called case constants) or with the word else. The selector must be 
of a byte-sized or word-sized ordinal type, so string types and the 
integer type Longint are invalid selector types. All case constants 
must be unique and of an ordinal type compatible with the 
selector type. 

case statement 

case --r' constant I '~ constant ~ statement f--
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Repetitive 
statements 

else part -®--I statement ~ 

The case statement executes the statement prefixed by a case 
constant equal to the value of the selector or a case range contain­
ing the value of the selector. If no such case constant of the case 
range exists and an else part is present, the statement following 
else is executed. If there is no else part, execution continues with 
the next statement following the if statement. 

These are examples of case statements: 

case Operator of 
Plus: X := X + Y; 
Minus: X := X - Y; 
Times: X := X * Y; 

end; 

case I of 
0, 2, 4, 6, 8: Writeln('Even digit'); 
1, 3, 5, 7, 9: Writeln('Odd digit'); 
10 .. 100: Writeln('Between 10 and 100'); 

else 
Writeln('Negative or greater than 100'); 

end; 

Repetitive statements specify certain statements to be executed 
repeatedly. 

repetitive statement 

for statement 

If the number of repetitions is known beforehand, the for 
statement is the appropriate construct. Otherwise, the while or 
repeat statement should be used. 

The Break and Continue standard procedures can be used to 
control the flow of repetitive statements: Break terminates a 
repetitive statement, and Continue continues with the next 
iteration of a repetitive statement. For more details on these 
standard procedures, see Chapter I, "Library reference," in the 
Programmer's Reference. 
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Repeat statements A repeat statement contains an expression that controls the 
repeated execution of astatement sequence within that repeat 
statement. 

repeat statement 

~expressionf---

The expression must produce a result of type Boolean. The 
statements between the symbols repeat and until are executed in 
sequence until, at the end of a sequence, the expression yields 
True. The sequence is executed at least once because the expres­
sion is evaluated after the execution of each sequence. 

These are examples of repeat statements: 

repeat 
K := I mod J; 
I := J; 
J := K; 

until J = 0; 

repeat 
Write(/Enter value (0 .. 9): '); 
Readln(1) ; 

until (I >= 0) and (I <= 9); 

While statements A while statement contains an expression that controls the 
repeated execution of a statement (which can be a compound 
statement). 

Chapter 7, statements 

while statement ~ expression f---®--l statement f--. 
The expression controlling the repetition must be of type Boolean. 
It is evaluated before the contained statement is executed. The 
contained statement is executed repeatedly as long as the expres­
sion is True. If the expression is False at the beginning, the state­
ment isn't executed at all. 

These are examples of while statements: 

while Data[1] <> X do I := I + 1; 
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while I > 0 do 
begin 

if Odd (I) then Z := Z * X; 
I := I div 2; 
X := Sqr(X); 

end; 

while not 'Eof(1nFile) do 
begin 

Readln(1nFile, Line); 
Process (Line) ; 

end; 

For statements The for statement causes a statement to be repeatedly executed 
while a progression of values is assigned to a control variable. 
Such a statement can be a compound statement. 

See Chapter 8 for a 
discussion of locality and 

scope. 

for statement 

control variable -I variable identifier ~ 

initial value -I expression ~ 

final value -I expression ~ 

The control variable must be a variable identifier (without any 
qualifier) that is local in scope to the block containing the for 
statement. The control variable must be of an ordinal type. The 
initial and final values must be of a type assignment-compatible 
with the ordinal type. 

When a for statement is entered, the initial and final values are 
determined once for the remainder of the execution of the for 
statement. 

The statement contained by the for statement is executed once for 
every value in the range initial value to final value. The control vari­
able always starts off at initial value. When a for statement uses to, 
the value of the control variable is incremented by one for each 
repetition. If initial value is greater than final value, the contained 
statement isn't executed. When a for statement uses downto, the 
value of the control variable is decremented by one for each 
repetition. If initial value value is less than final value, the contained 
statement isn't executed. 
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If the contained statement alters the value of the control variable, 
your results will probably not be what you expect. After a for 
statement is executed, the value of the control variable value is 
undefined, unless execution of the for statement was interrupted 
by a goto from the for statement. 

With these restrictions in mind, the for statement 

for V := ExprI to Expr2 do Body; 

is equivalent to 

begin 
TempI := ExprI; 
Temp2 := Expr2; 
if TempI <= Temp2 then 
begin 

V := TempI; 
Body; 
while V <> Temp2 do 
begin 

V : = Succ (V) ; 

Body; 
end; 

end; 
end; 

and the for statement 

for V := ExprI downto Expr2 do Body; 

is equivalent to 

begin 
TempI := ExprI; 
Temp2 := Expr2; 
if TempI >= Temp2 then 
begin 

V := TempI; 
Body; 
while V <> Temp2 do 
begin 

V := Pred(V); 

Body; 
end; 

end; 
end; 
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where Templ and Temp2 are auxiliary variables of the host type of 
the variable V and don't occur elsewhere in the program. 

These are examples of for statements: 

for I := 2 to 63 do 
if Data[I] > Max then 

Max := Data[I] 

for I := 1 to 10 do 
for J := 1 to 10 do 
begin 

X := 0; 
for K := 1 to 10 do 

X := X + Mat1[I, K] * Mat2[K, J]; 
Ma t [ I, J] : = X; 

end; 

for C := Red to Blue do Check(C); 

The with statement is shorthand for referencing the fields of a 
record, and the fields and methods of an object. Within a with 
statement, the fields of one or more specific record variables can 
be referenced using their field identifiers only. The syntax of a 
with statement follows: 

record or object ~I L-------.. 
variable reference ~ variable reference_ ~ 

Given this type declaration, 

type 
TDate = record 

Day : Integer; 
Month: Integer; 
Year : Integer; 

end; 

var OrderDate: TDate; 

Language Guide 



Chapter 7, Statements 

here is an example of a with statement: 

with OrderDate do 
if Month = 12 then 
begin 

Month := 1; 
Year := Year + 1 

end 
else 

Month := Month + 1; 

This is equivalent to 

if OrderDate.Month = 12 then 
begin 

OrderDate.Month := 1; 
OrderDate.Year := TDate.Year + 1 

end 
else 

OrderDate.Month := TDate.Month + 1; 

Within a with statement, each variable reference is first checked to 
see if it can be interpreted as a field of the record. If so, it's always 
interpreted as such, even if a variable with the same name is also 
accessible. Suppose the following declarations have been made: 

type 
TPoint = record 
X, Y: Integer; 
end; 

var 
X: TPoint; 
Y: Integer; 

In this case, both X and Y can refer to a variable or to a field of the 
record. In the statement 

with X do 
begin 

X := 10; 
Y := 25; 

end; 

the X between with and do refers to the variable of type TPoint, 
but in the compound statement, X and Y refer to X.X and X. Y. 
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The statement 

with Vl, V2, ... Vn do S; 

is equivalent to 

with Vl do 
with V2 do 

with Vn do 
S; 

In both case?, if Vn is a field of both Vl and V2, it's interpreted as 
V2.Vn, not Vl.Vn. 

If the selection of a record variable involves indexing an array or 
dereferencing a pointer, these actions are executed once before the 
component statement is executed. 
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Blocks 

A p T E R 

8 

Blocks, locality, and scope 

A block is made up of declarations, which are written and 
combined in any order, and statements. Each block is part of a 
procedure declaration, a function declaration, a method 
declaration, or a program or unit. All identifiers and labels 
declared in the declaration part are local to the block. 

The overall syntax of any block follows this format: 

block -l declaration part ~I statement part ~ 

declaration part 
H label declaration part I 

H constant declaration part 

r-- type declaration part 

r-- variable declaration part I 

~ procedure/function declaration part I--

Labels that mark statements in the corresponding statement part 
are declared in the label declaration part. Each label must mark only 
one statement. 
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label declaration part 

A label must be an identifier or a digit sequence in the range a to 
9999. 

The constant declaration part consists of constant declarations local 
to the block. 

constant declaration part 
.-----------, 

>--:t---,r--+! constant declaration i----r--"T"'"+ 

typed constant declaration 

The type declaration part includes all type declarations local to the 
block. 

type declaration part -~ type declaration I--r 
The variable declaration part is composed of variable declarations 
local to the block. 

variable declaration part -@>-rl variable declaration l-r 
The procedure and function declaration part is made up of procedure 
and function declarations local to the block. 

procedure/function declaration part 

L...-r---r--+I procedure declaration 

function declaration 

constructor declaration 

destructor declaration 

The statement part defines the statements or algorithmic actions to 
be executed by the block. 

statement part -l compound statement r 
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Rules of scope 

Block scope 

Record scope 

See "Record types" on 
page 32. 

The presence of an identifier or label in a declaration defines the 
identifier or label. Each time the identifier or label occurs again, it 
must be within the scope of this declaration. 

The scope of an identifier or label declared in a label, constant, 
type, variable, procedure, or function declaration stretches from 
the point of declaration to the end of the current block, and 
includes all blocks enclosed by the current block. 

An identifier or label declared in an outer block can be redeclared 
in an inner block enclosed by the outer block. Before the point of 
declaration in the inner block, and after the end of the inner block, 
the identifier or label represents the entity declared in the outer 
block. 

program Outer; 
type 

I = Integer; 
var 

T: I; 

procedure Inner; 
type 

T = I; 

var 
I: T; 

begin 
I : = 1; 

end; 

begin 
T : = 1; 

end. 

{ Start of outer scope } 

{ define I as type Integer } 

{ define T as an Integer variable } 

Start of inner scope } 

redefine T as type Integer 

{ redefine I as an Integer variable 

{ End of inner scope } 

{ End of outer scope } 

The scope of a field identifier declared in a record-type definition 
extends from the point of declaration to the end of the record-type 
definition. Also, the scope of field identifiers includes field desig­
nators and with statements that operate on variable references of 
the given record type. 
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Object scope 

See "Object types" on 
page 33. 

Unit scope 

The scope of a component identifier declared in an object-type 
definition extends from the point of declaration to the end of the 
object-type definition, and extends over all descendants of the 
object type and the blocks of all method declarations of the object 
type. The scope of component identifiers includes field 
designators and with statements that operate on variable 
references of the given object type. 

The scope of identifiers declared in the interface section of a unit 
follow the rules of block scope, and extends over all clients of the 
unit. In other words, programs or units containing uses clauses 
have access to the identifiers belonging to the interface parts of 
the units in those uses clauses. 

Each unit in a uses clause imposes a new scope that encloses the 
remaining units used and the program or unit containing the 
uses clause. The first unit in a uses clause represents the 
outermost scope, and the last unit represents the innermost scope. 
This implies that if two or more units declare the same identifier, 
an unqualified reference to the identifier selects the instance 
declared by the last unit in the uses clause. But by writing a 
qualified identifier (a unit identifier, followed by a period, 
followed by the identifier), every instance of the identifier can be 
selected. 

The identifiers of Turbo Pascal's predefined constants, types, 
variables, procedures, and functions act as if they were declared 
in a block enclosing all used units and the entire program. In fact, 
these standard objects are defined in a unit called System, which is 
used by any program or unit before the units named in the uses 
clause. This means that any unit or program can redeclare the 
standard identifiers, but a specific reference can still be made 
through a qualified identifier, for example, System.Integer or 
System. Writeln. 
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See Chapter 8, "Blocks, 
locality, and scope, II for a 

definition of a block. 

Standard procedures and 
functions are those that are 

defined in Turbo Pascal's 
System unit. 

A p T E R 

9 

Procedures and functions 

Procedures and functions let you nest additional blocks in the 
main program block. Each procedure or function declaration has a 
heading followed by a block. A procedure is activated by a 
procedure statement; a function is activated by the evaluation of 
an expression that contains its call and returns a value to that 
expression. 

This chapter discusses the different types of procedure and 
function declarations and their parameters. 

Procedure declarations 

A procedure declaration associates an identifier with a block as a 
procedure; that procedure can then be activated by a procedure 
statement. 

procedure declaration 

Y procedure heading f--O-l subroutine block ~ 

procedure heading 

formal parameter list 
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The syntax for a formal 
parameter list is shown in the 

section "Parameters" on 
page 107. 
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Near and far 
declarations 

Near and far calls are 
described in Chapter 20, 

"Control issues. " 

procedure body 

The procedure heading names the procedure's identifier and 
specifies the formal parameters (if any). 

A procedure is activated by a procedure statement, which states 
the procedure's identifier and actual parameters, if any. The 
statements to be executed on activation are noted in the statement 
part of the procedure's block. If the procedure's identifier is used 
in a procedure statement within the procedure's block, the 
procedure is executed recursively (it calls itself while executing). 

Here's an example of a procedure declaration: 

procedure NumString(N: Integer; var S: string); 
var 

V: Integer; 
begin 

V := Abs (N); 

S .- " . . - , 
repeat 

S := Chr(N mod 10 + Ord('O')) + S; 
N := N div 10; 

until N = 0; 

if N < 0 then 
S .- '-' + S; 

end; 

Turbo Pascal supports two procedure and function call models: 
near and far. In terms of code size and execution speed, the near 
call model is the more efficient, but near procedures and functions 
can only be called from within the module they are declared in. 
On the other hand, far procedures and functions can be called 
from any module, but the code for a far call is slightly less 
efficient. 

The compiler automatically selects the correct call model based on 
a procedure's or function's declaration: Procedures and functions 
declared in the interface part of a unit use the far call model-
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Interrupt 
declarations 

See "Writing interrupt 
procedures" on page 243. 

Forward 

they can be called from other modules. Procedures and functions 
declared in a program or in the implementation part of a unit use 
the near call model-they can only be called from within that 
program or unit. 

For some purposes, a procedure or function may be required to 
use the far call model. For example, if a procedure or function is 
to be assigned to a procedural variable, it has to use the far call 
model. The $F compiler directive can be used to override the 
compiler's automatic call model selection. Procedures and 
functions compiled in the {$F+} state always use the far call 
model; in the {$F-} state, the compiler automatically selects the 
correct model. The default state is {$F-}. 

To force a specific call model, a procedure or function declaration 
can optionally specify a near or far directive before the block-if 
such a directive is present, it overrides the setting of the $F 
compiler directive as well as the compiler's automatic call model 
selection. 

Optionally, a procedure declaration can specify an interrupt 
directive before the block; the procedure is then considered an 
interrupt procedure. For now, note that interrupt procedures can't 
be called from procedure statements, and that every interrupt 
procedure must specify a parameter list like the following: 

procedure MyInt(Flags, es, IP, AX, BX, ex, DX, SI, DI, DS, ES, 
BP: Word); 

interrupt; 

The parameter list doesn't have to match this syntax perfectly; it 
can be shorter and use different names, but the register contents 
are passed in the order listed .above. 

declarations A procedure or function declaration that specifies the directive 
forward instead of a block is a forward declaration. Somewhere 
after this declaration, the procedure must be defined by a defining 
declaration. The defining declaration can omit the formal 
parameter list and the function result, or it can optionally repeat 
it. In the latter case, the defining declaration's heading must match 
exactly the order, types, and names of parameters, and the type of 
the function result, if any. 
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No forward dec/arations are 
allowed in the interface part 

ofa unit. 

External 
declarations 

For further details on linking 
with assembly language, see 

Chapter 23. 
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The forward declaration and the defining declaration must appear 
in the same procedure and function declaration part. Other 
procedures and functions can be declared between them, and they 
can call the forward-declared procedure. Therefore, mutual 
recursion is possible. 

The forward declaration and the defining declaration constitute a 
complete procedure or function declaration. The procedure or 
function is considered declared at the forward declaration. 

This is an example of a forward declaration: 

procedure Walter(M, N: Integer); forward; 

procedure Clara(X, Y: Real); 
begin 

Walter(4, 5); 

end; 

procedure Walter; 
begin 

Clara (8.3, 2.4); 

end; 

A procedure's or function's defining declaration can be an external 
or assembler declaration; however, it can't be a near, far, 
interrupt, or inline declaration or another forward declaration. 

External declarations let you interface with separately compiled 
procedures and functions written in assembly language. The 
external code must be linked with the Pascal program or unit 
through {$L filename} directives. 

Examples of external procedure declarations follow: 

procedure MoveWord(var Source, Dest; Count: Word); external; 
procedure MoveLong(var Source, Dest; Count: Word); external; 

procedure FillWord(var Dest; Data: Integer; Count: Word); external; 
procedure FillLong(var Dest; Data: Longint; Count: Word); external; 

{$L BLOCK.OBJ} 
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Assembler 
declarations 

For more details on 
assembler procedures and 
functions, see Chapter 22. 

Inline 

With assembler declarations, you can write entire procedures and 
functions in inline assembly language. 

asm block 

declaration part asm statement 

declarations The inline directive enables you to write machine code instruc­
tions in place of a block of Pascal code. 

See the syntax of an inline 
statement on page 284. 

inline directive -l inline statement ~ 

When a normal procedure or function is called, the compiler 
generates code that pushes the procedure's or function's 
parameters onto the stack and then generates a CALL instruction 
to call the procedure or function. When you call an inline 
procedure or function, the compiler generates code from the inline 
directive instead of the CALL. Therefore, an inline procedure or 
function is expanded every time you refer to it, just like a macro 
in assembly language. 

Here's a short example of two inline procedures: 

procedure Disablelnterruptsi inline($FA)i 
procedure Enablelnterruptsi inline($FB)i 

{ eLI } 
{ STI } 

Function declarations 

A function declaration defines a block that computes and returns 
a value. 

function declaration 

L-I function heading ~I subroutine block 1-0-
function heading 

.----, 
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A function can't return a 
structured type or a result type 

procedural type. 

The function heading specifies the identifier for the function, the 
formal parameters (if any), and the function result type. 

A function is activated by the evaluation of a function call. The 
function call gives the function's identifier and actual parameters, 
if any, required by the function. A function call appears as an 
operand in an expression. When the expression is evaluated, the 
function is executed, and the value of the operand becomes the 
value returned by the function. 

The statement part of the function's block specifies the statements 
to be executed upon activation of the function. The block should 
contain at least one assignment statement that assigns a value to 
the function identifier. The result of the function is the last value 
assigned. If no such assignment statement exists or if it isn't 
executed, the value returned by the function is undefined. 

If the function's identifier is used in a function call within the 
function's block, the function is executed recursively. 

Following are examples of function declarations: 

function Max(A: Vector; N: Integer): Extended; 
var 
. X: Extended; 

I: Integer; 
begin 

X := A[l]; 

for I := 2 to N do 
if X < A[I] then X := A[I]; 

Max := X; 
end; 

function Power(X: Extended; Y: Integer): Extended; 
var 

Z: Extended; 
I: Integer; 

begin 
Z := 1.0; I := Y; 

while I > 0 do 
begin 

if Odd (I) then Z := Z * X; 
I := I div 2; 
X := Sqr(X); 

end; 
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Power := Zj 
endj 

Like procedures, functions can be declared as near, far, forward, 
external, assembler, or inline; but interrupt functions aren't 
allowed. 

Method declarations 

See page 37 for more about 
declaring methods in 

objects. 

The declaration of a method within an object type corresponds to 
a forward declaration of that method. Therefore, somewhere after 
the object-type declaration and within the same scope as the 
object-type declaration, the method must be implemented by a 
defining declaration. 

For procedure and function methods, the defining declaration 
takes the form of a normal procedure or function, but the proce­
dure or function identifier is a qualified-method identifier. This is an 
object-type identifier followed by a period C.) and then by a 
method identifier. 

For constructor methods and destructor methods, the defining 
declaration takes the form of a procedure method declaration, 
except that the procedure reserved word is replaced by a con­
structor or destructor reserved word. 

Optionally, a method's defining declaration can repeat the formal 
parameter list of the method heading in the object type. If it does, 
the defining declaration's method heading must match exactly the 
order, types, and names of the parameters, and the type of the 
function result, if any. 

In the defining declaration of a method, there is always an impli­
cit parameter with the identifier Self, corresponding to a formal 
variable parameter that possesses the object type. In the method 
block, Self represents the instance whose method component was 
designated to activate the method. Therefore, any changes made 
to the values of the fields of Self are reflected in the instance. 

The scope of a component identifier in an object type extends over 
any procedure, function, constructor, or destructor block that 
implements a method of the object type. The effect is the same as 
if the entire method block was embedded in a with statement of 
the form 

with Self do begin ... end 
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See the object-type 
dec/arations of these 

examples on page 34. 

Constructors and 
destructors 

For this reason, the spellings of component identifiers, formal 
method parameters, Self, and any identifiers introduced in a 
method implementation must be unique. 

Here are some examples of method implementations: 

procedure TRectangle.Intersect(var R: TRectangle); 
begin 

if A.X < R.A.X then A.X := R.A.X; 
if A.Y < R.A.Y then A.Y := R.A.Y; 
if B.X > R.B.X then B.X := R.B.X; 
if B.Y > R.B.Y then B.Y := R.B.Y; 
if (A.X >= B.X) or (A.Y >= B.Y) then Init(O, 0, 0, 0); 

end; 

procedure TField.Display; 
begin 

GotoXY(X, Y); 
Write (Name A

, ' " GetStr); 
end; 

function TNumField.PutStr(S: String): Boolean; 
var 

E: Integer; 
begin 

Val(S, Value, E); 
PutStr .- (E = 0) and (Value >= Min) and (Value <= Max); 

end; 

Constructors and destructors are specialized forms of methods. 
Used in connection with the extended syntax of the New and 
Dispose standard procedures, constructors and destructors have 
the ability to allocate and deallocate dynamic objects. In addition, 
construCtors have the ability to perform the required initialization 
of objects that contain virtual methods. Like other methods, con­
structors and destructors can be inherited, and an object can have 
any number of constructors and destructors. 

Constructors are used to initialize newly created objects. Usually, 
the initialization is based on values passed as parameters to the 
constructor. Constructors can't be virtual because the virtual­
method dispatch-mechanism depends on a constructor first 
having initialized the object. 

constructor declaration 

Y constructor heading ~ subroutine block ~ 
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Destructors can be virtual, 
and often are. Destructors 

seldom take any parameters. 

formal parameter list 

Here are some examples of constructors: 

constructor TField.Copy(var F: TField); 
begin 

Self := F; 
end; 

constructor TField.Init(FX, FY, FLen: Integer; FName: String); 
begin 

X := FX; 
Y := FY; 
Len := FLen; 
GetMem(Name, Length (FName) + 1); 
Name" := FName; 

end; 

constructor TStrField.Init(FX, FY, FLen: Integer; FName: String); 
begin 

inherited Init(FX, FY, FLen, FName); 
GetMem(Value, Len); 
Value" := "; 

end; 

The first action of a constructor of a descendant type, such as the 
preceding TStrField.lnit, is almost always to call its immediate 
ancestor's corresponding constructor to initialize the inherited 
fields of the object. Having done that, the constructor then ini­
tializes the fields of the object that were introduced in the 
descendant. 

Destructors are the counterparts of constructors, and are used to 
clean up objects after their use. Typically, the cleanup consists of 
disposing of any pointer fields that were allocated by the object. 

destructor declaration 

Y destructor heading ~ subroutine block ~ 
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destructor heading 

formal parameter list 

Here are some examples of destructors: 

destructor TField.Done; 
begin 

FreeMem(Name, Length (Name A
) + 1); 

end; 

destructor TStrField.Done; 
begin 

FreeMem(Value, Len); 
inherited Done; 

end; 

A destructor of a descendant type, such as the preceding 
TStrField.Done, usually disposes of the pointer fields introduced in 
the descendant, and then, as its last action, calls the correspond­
ing destructor of its immediate ancestor to dispose of any inher­
ited pointer fields of the object. 

Constructor-error Turbo Pascal allows you to install a heap-error function through 
recovery the HeapError variable in the System unit; see Chapter 19. This 

functionality affects the way object-type constructors work. 

By default, when there isn't enough memory to allocate a 
dynamic instance of an object type, a constructor call using the 
extended syntax of the New standard procedure generates run­
time error 203. If you install a heap-error function that returns 1 
rather than the standard function result of 0, a constructor call 
through New will return nil when it can't complete the request 
(instead of aborting the program). 

The code that performs allocation and virtual method table (VMT) 
field initialization of a dynamic instance is part of a constructor's 
entry sequence: When control arrives at the begin of the construc­
tor's statement part, the instance will have been allocated and 
initialized already. If allocation fails and the heap-error function 
returns 1, the constructor skips execution of the statement part 
and returns a nil pointer. The pointer specified in the New 
construct that called the constructor is set to nil. 
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Parameters 

Once control arrives at the begin of a constructor's statement part, 
the object-type instance is guaranteed to have been allocated and 
initialized successfully. The constructor itself, however, might 
attempt to allocate dynamic variables to initialize pointer fields in 
the instance and, in turn, these allocations might fail. If that 
happens, a well-behaved constructor should reverse any 
successful allocations and deallocate the object-type instance so 
that the net result becomes a nil pointer. To make such backing 
out possible, Turbo Pascal implements the Fail standard 
procedure that takes no parameters and can be called only from 
within a constructor. A call to Fail causes a constructor to deallo­
cate the dynamic instance that was allocated upon entry to the 
constructor and causes the return of a nil pointer to indicate its 
failure. 

When dynamic instances are allocated through the extended 
syntax of New, a resulting value of nil in the specified pointer 
variable indicates that the operation failed. Unfortunately, there is 
no such pointer variable to inspect after the construction of a 
static instance or when an inherited constructor is called. Instead, 
Turbo Pascal allows a constructor to be used as a Boolean func­
tion in an expression: A return value of True indicates success, 
and a return value of False indicates failure due to a call to Fail 
within the constructor. 

On disk you'll find two programs, NORECVER.P AS and 
RECOVER.P AS. Both implement two simple object types that 
contain pointers. The NORECVER version of the program does 
not implement constructor-error recovery. 

RECOVER.P AS demonstrates how the program can be rewritten 
to implement error recovery. Notice how the corresponding de­
structors in Base.Init and Derived.lnit are used to reverse any 
successful allocations before Fail is called to finally fail the 
operation. Also notice that in Derived.Init, the call to Base.lnit is 
coded within an expression so that the success of the inherited 
constructor can be tested. 

The declaration of a procedure or function specifies a formal 
parameter list. Each parameter declared in a formal parameter list 
is local to the procedure or function being declared. Your 
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Open parameters are 
described on page 7 7 7. 

Value parameters 
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program can refer to it by its identifier in the block associated 
wi th the procedure or function. 

formal parameter list -cD-rl parameter .declaration r-rw­
~------~CD~·------~ 

parameter declaration 
,...--------, 

parameter type 

There are four kinds of parameters: value, constant, variable, and 
untyped. These are characterized as follows: 

• A parameter group without a preceding var and followed by a 
type is a list of value parameters. 

• A parameter group preceded by const and followed by a type 
is a list of constant parameters. 

• A parameter group preceded by var and followed by a type is a 
list of variable parameters. 

• A parameter group preceded by var or const and not followed 
by a type is a list of untyped parameters. 

String and array type parameters can be open parameters. A 
variable parameter declared using the OpenString identifier, or 
using the string keyword in the {$P+} state, is an open-string 
parameter. A value, constant, or variable parameter declared using 
the syntax array of T is an open-array parameter. 

A formal value parameter acts like a variable local to the proce­
dure or function, except it gets its initial value from the corres­
ponding actual parameter upon activation of the procedure or 
function. Changes made to a formal value parameter don't affect 
the value of the actual parameter. 

A value parameter's corresponding actual parameter in a proce­
dure statement or function call must be an expression, and its 
value must not be of file type or of any structured type that 
contains a file type. 

The actual parameter must be assignment-compatible with the 
type of the formal value parameter. If the parameter type is string, 
then the formal parameter is given a size attribute of 255. 
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Constant 
parameters A formal constant parameter acts like a local read-only variable 

that gets its value from the corresponding actual parameter upon 
activation of the procedure or function. Assignments to a formal 
constant parameter aren't allowed. Similarly, a formal constant 
parameter can't be passed as an actual variable parameter to 
another procedure or function. 

Variable 
parameters 

File types can be passed 
only as variable parameters. 

For more information on 
open-string parameters, see 

page 717. 

A constant parameter's corresponding actual parameter in a 
procedure statement or function must follow the same rules as an 
actual value parameter. 

In cases where a formal parameter never changes its value during 
the execution of a procedure or function, a constant parameter 
should be used instead of a value parameter. Constant parameters 
allow the implementor of a procedure or function to protect 
against accidental assignments to a formal parameter. Also, for 
structured- and string-type parameters, the compiler can generate 
more efficient code when constant parameters are used instead of 
value parameters. 

A variable parameter is used when a value must be passed from a 
procedure or function to the caller. The corresponding actual 
parameter in a procedure statement or function call must be a 
variable reference. The formal variable parameter represents the 
actual variable during the activation of the procedure or function, 
so any changes to the value of the formal variable parameter are 
reflected in the actual parameter. 

Within the procedure or function, any reference to the formal 
variable parameter accesses the actual parameter itself. The type 
of the actual parameter must be identical to the type of the formal 
variable parameter (you can bypass this restriction through 
untyped parameters). 

The $P compiler directive controls the meaning of a variable 
parameter declared using the string keyword. In the default {$P-} 
state, string corresponds to a string type with a size attribute of 
255. In the {$P+} state, string indicates that the parameter is an 
open-string parameter. 
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Untyped 
parameters 

If referencing an actual variable parameter involves indexing an 
array or finding the object of a pointer, these actions are executed 
before the activation of the procedure or function. 

The rules of object-type assignment compatibility also apply to 
object-type variable parameters: For a formal parameter of type 
Tl, the actual parameter might be of type T2 if T2 is in the domain 
of Tl. For example, given the object-type declarations found on 
page 34, the TField.Copy method might be passed an instance of 
TField, TStrField, TNumField, TZipField, or any other instance of a 
descendant of TField. 

When a formal parameter is an untyped parameter, the corres­
ponding actual parameter can be any variable or constant 
reference, regardless of its type. An untyped parameter declared 
using the var keyword can be modified, whereas an untyped 
parameter declared using the const keyword is read-only. 

Within the procedure or function, the untyped parameter is 
typeless; that is, it is incompatible with variables of all other 
types, unless it is given a specific type through a variable typecast. 

This is an example of untyped parameters: 

function Equal (var Source, Dest; Size: Word): Boolean; 
type 

TBytes = array[O .. 65534] of Byte; 
var 

N: Word; 
begin 

N := 0; 
while (N < Size) and (TBytes(Dest) [N] = TBytes(Source) [N]) do 

Inc (N); 
Equal := N = Size; 

end; 

This function can be used to compare any two variables of any 
size. For instance, given the declarations 

type 
TVector = array[l .. lO] of Integer; 
TPoint = record 

X, Y: Integer; 
end; 
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Open parameters 

Open-string 
parameters 

var 
Vecl, Vec2: TVector; 
N: Integer; 
P: TPoint; 

the function then calls 

Equal (Vecl, Vec2, SizeOf(TVector)) 
Equal (Vecl, Vec2, SizeOf(Integer) * N) 
Equal (Vec[l] , Vecl[6], SizeOf(Integer) * 5) 
Equal (Vecl[l] , P, 4) 

which compares Vec1 to Vee2, the first N components of Veel to 
the first N components of Vee2, the first five components of Vec1 
to the last five components of Vec1, and Veel[l] to P.X and Vec1[2] 
toP.Y. 

While untyped parameters give you greater flexibility, they can be 
riskier to use. The compiler can't verify that operations on 
untyped variables are valid. 

Open parameters allow strings and arrays of varying sizes to be 
passed to the same procedure or function. 

Open-string parameters can be declared in two ways: 

• Using the OpenString identifier 

• Using the string keyword in the {$P+} state 

The OpenString identifier is declared in the System unit. It denotes 
a special string type that can only be used in the declaration of 
string parameters. For reasons of backward compatibility, 
OpenString isn't a reserved word-this means that OpenString can 
be redeclared as a user-defined identifier. 

When backward compatibility isn't an issue, a {$P+} compiler 
directive can be used to change the meaning of the string 
keyword. In the {$P+} state, a variable declared using the string 
keyword is an open-string parameter. 

For an open-string parameter, the actual parameter can be a 
variable of any string type. Within the procedure or function, the 
size attribute (maximum length) of the formal parameter will be 
the same as that of the actual parameter. 
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Open-string parameters behave exactly as variable parameters of 
a string type, except that they can't be passed as regular variable· 
parameters to other procedures and functions. They can, however, 
be passed as open-string parameters again. 

In this example, the 5 parameter of the Assign5tr procedure is an 
open-string parameter: 

procedure Assign8tr(var 8: Open8tring); 
begin 

8 := '0123456789ABCDEF'; 
end; 

Because 5 is an open-string parameter, variables of any string type 
can be passed to Assign5tr: 

var 
81: string[10]; 
82: string [20] ; 

begin 
Assign8tr (81); 
Assign8tr(82); 

end; 

81= '0123456789' } 
82 = '0123456789ABCDEF' 

Within Assign5tr, the maximum length of the 5 parameter is the 
same as that of the actual parameter. Therefore, in the first call to 
Assign5tr, the assignment to the 5 parameter truncates the string 
because the declared maximum length of 51 is 10. 

When applied to an open-string parameter, the Low standard 
function returns zero, the High standard function returns the 
declared maximum length of the actual parameter, and the 5izeO! 
function returns the size of the actual parameter. 

In the next example, the Fill5tring procedure fills a string to its 
maximum length with a given character. Notice the use of the 
High standard function to obtain the maximum length of an 
open-string parameter. 

procedure Fil18tring(var 8: Open8tring; Ch: Char); 
begin 

S[O] := Chr(High(S)); Set string length} 
FillChar(8[1], High(8), Ch); Set string characters 

end; 

Value and constant parameters declared using the Open5tring 
identifier or the string keyword in the {$P+} state aren't open­
string parameters. Instead, such parameters behave as if they 
were declared using a string type with a maximum length of 255, 
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Open-array 
parameters 

and the High standard function always returns 255 for such 
parameters. 

When open parameters are enabled (using a {$P+} compiler 
directive), a formal parameter declared using the syntax 

array of T 

is an open-array parameter. T must be a type identifier, and the 
actual parameter must be a variable of type T, or an array variable 
whose element type is T. Within the procedure or function, the 
formal parameter behaves as if it was declared as 

array[O .. N - 1] of T 

where N is the number of elements in the actual parameter. In 
effect, the index range of the actual parameter is mapped onto the 
integers a to N -1. If the actual parameter is.a simple variable of 
type T, it's treated as an array with one element of type T. 

A formal open-array parameter can be accessed by element only. 
Assignments to an entire open array aren't allowed, and an open 
array can be passed to other procedures and functions only as an 
open-array parameter or as an untyped variable parameter. 

Open-array parameters can be value, constant, and variable 
parameters and have the same semantics as regular value, 
constant, and variable parameters. In particular, assignments to 
elements of a formal open-array constant parameter aren't 
allowed, and assignments to elements of a formal open-array 
value parameter don't affect the actual parameter. 

For an open-array value parameter, the compiler creates a local 
copy of the actual parameter within the procedure or function's 
stack frame. Therefore, be careful not to overflow the stack when 
passing large arrays as open-array value parameters. 

When applied to an open-array parameter, the Low standard 
function returns zero, the High standard function returns the 
index of the last element in the actual array parameter, and the 
SizeD! function returns the size of the actual array parameter. 

The Clear procedure in the next example assigns zero to each 
element of an array of Real, and the Sum function computes the 
sum of all elements in an array of Real. Because the A parameter 
in both cases is an open-array parameter, the subroutines can 
operate on any array with an element type of Real. 
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procedure Clear(var A: array of Real) ; 
var 

I: Word; 
begin 

for I := 0 to High(A) do A[I] := 0; 
end; 

function Sum(const A: array of Real): Real; 
var 

I: Word; 
S: Real; 

begin 
S : = 0; 
for I := 0 to High(A) do S := S + A[I]; 
Sum := S; 

end; 

When the element type of an open-array parameter is Char, the 
actual parameter may be a string constant. For example, given the 
procedure declaration, 

procedure PrintStr(const S: array of Char); 
var 

I: Integer; 
begin 

for I := 0 to High(S) do 
if SrI] <> #0 then Write(S[I]) else Break; 

end; 

the following are valid procedure statements: 

PrintStr('Hello world') i 

PrintStr (' A') ; 

When passed as an open-character array, an empty string is 
converted to a string with one element containing a NULL 
character, so the statement PrintStr(") is identical to the statement 
PrintStr(#O). 

Dynamic object-type variables 
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The New and Dispose standard procedures allow a constructor call 
or destructor call as a second parameter for allocating or 
disposing of a dynamic object-type variable. This is the syntax: 
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New(P, Construct) 

and 

Dispose(P, Destruct) 

where P is a pointer variable, pointing to an object type, and 
Construct and Destruct are calls to constructors and destructors of 
that object type. For New, the effect of the extended syntax is the 
same as executing 

New(P) ; 
P".Construct; 

And for Dispose, the effect of the extended syntax is the same as 
executing 

P".Destruct; 
Dispose (P) ; 

Without the extended syntax, you would frequently have to call 
New followed by a constructor call or call a destructor followed by 
a call to Dispose. The extended syntax improves readability and 
generates shorter and more efficient code. 

The following illustrates the use of the extended New and Dispose 
syntax: 

var 
SP: PStrField; 
ZP: PZipField; 

begin 
New(SP, Init(l, 1, 25, 'Firstname')); 
New(ZP, Init (1, 2, 5, 'zip code', 0, 99999)); 
SP".Edit; 
ZP".Edit; 

Dispose(ZP, Done); 
Dispose(SP, Done); 

end; 

You can also use New as afunction that allocates and returns a 
dynamic variable of a specified type: 

New(T) 

or 

New(T, Construct) 
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In the first form, T can be any pointer type. In the second form, T 
must point to an object type and Construct must be a call to a con­
structor of that object type. In both cases, the type of the function 
result is T. 

Here's an example: 

var 
Fl, F2: PField; 

begin 
Fl := New(PStrField, Init(l, 1, 25, 'Firstnarne')l.; 
F2 := New(PZipField, Init(l, 2, 5, 'zip code', 0, 99999)); 

WriteLn(F1 A .GetStr); 
WriteLn(F2 A .GetStr); 

Dispose(F2, Done); 
Dispose(Fl, Done); 

end; 

{ Calls TStrField.GetStr } 
{ Calls TzipField.GetStr } 

{ Calls TField.Done } 
{ Calls TStrField.Done } 

Notice that even though F1 and F2 are of type PField, the 
extended-pointer assignment-compatibility rules allow F1 and F2 
to be assigned a pointer to any descendant of TField. Because 
GetStr and Done are virtual methods, the virtual-method 
dispatch-mechanism correctly calls TStrField.GetStr, 
TZipField.GetStr, TField.Done, and TStrField.Done, respectively. 
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Programs and units 

A Turbo Pascal program consists of a program heading, an 
optional uses clause, and a block. 

program 
LQr-p-r-og-ra-m-h-e-ad-in-g---'~ t Ii ,~ 

L_~========~~::::'--.J --i uses clause ~ 

The program heading specifies the program's name and its 
parameters. 

program parameters 

program parameters -I identifier list I-
If a program heading is present, the compiler ignores it. 

The uses clause identifies all units used by the program. 

uses clause 
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Unit syntax 

The unit heading 
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The System unit is always used automatically. System implements 
all low-level, run-time procedures and functions to support such 
features as file input and output (I/O), string handling, floating 
point, dynamic memory allocation, and others. 

Apart from System, Turbo Pascal implements many standard 
units, such as Dos and Crt. These aren't used automatically; you 
must include them in your uses clause. For example, 

uses Dos, Crt; { Can now use Dos and Crt 

The order of the units listed in the uses clause determines the 
order of their initialization (see "The initialization part" on 
page 120). 

To find the unit file containing a compiled unit, the compiler 
truncates the unit name listed in the uses clause to the first eight 
characters and adds the file extension .TPU. For example, a unit 
named MathFunctions will be stored in a file called 
MATHFUNC.TPU. Even though the file name is truncated, a uses 
clause must still specify the full unit identifier. 

Units are the basis of modular programming in Turbo Pascal. 
They're used to create libraries that you can include in various 
programs without making the source code available, and to 
divide large programs into logically related modules. 

The unit heading specifies the unit's name. 

unit heading -@D---l unit identifier r--
The unit name is used when referring to the unit in a uses clause. 
The name must be unique: Two units with the same name can't be 
used at the same time. 

The name of a unit's source file and binary file must be the same 
as the unit identifier, truncated to the first eight characters. If this 
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The interface part 

The 
implementation 

part 

isn't the case, the compiler can't find the source and/or binary file 
when compiling a program or unit that uses the unit. 

The interface part declares constants, types, variables, procedures, 
and functions that are public; that is, available to the host (the pro­
gram or unit using the unit). The host can access these entities as 
if they were declared in a block that encloses the host. 

interface part 

procedure and function 
heading part 

function heading 

constant declaration part 

type declaration part 

procedure and function 
heading part 

inline directive 

Unless a procedure or function is inline, the interface part only 
lists the procedure or function heading. The block of the 
procedure or function follows in the implementation part. 

The implementation part defines the block of all public proce­
dures and functions. In addition, it declares constants, types, vari­
ables, procedures, and functions that are private; that is, they 
aren't available to the host. 

implementation part 

Implementation )-,;:::======:::::;-r-1 declaration part 

The procedure and function declarations in the interface part are 
similar to forward declarations, although the forward directive 
isn't specified. Therefore, these procedures and functions can be 
defined and referenced in any sequence in the implementation 
part. 

Procedure and function headings can be duplicated from the 
interface part. You don't have to specify the formal parameter list. 
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The initialization 
part 

Indirect unit 

If you do, the compiler will issue a compile-time error if the 
interface and implementation declarations don't match. 

The initialization part is the last part of a unit. It consists either of 
the reserved word end (in which case, the unit has no initializa­
tion code) or of a statement part to be executed to initialize the 
unit. 

initialization part .~ I Y statement part ~ 
The initialization parts of units used by a program are executed in 
the same order that the units appear in the uses clause. 

references The uses clause in a module (program or unit) need only name 
the units used directly by that module. Consider the following: 

program Prog; 
uses Unit2; 
const a = b; 
begin 
end. 

unit Unit2; 
interface 
uses Unit1; 
const b = c; 
implementation 
end. 

unit Unit1; 
interface 
const c = 1; 
implementation 
const d = 2; 
end. 

Unit2 is directly dependent on Unitl and Prog is directly 
dependent on Unit2. Also, Prog is indirectly dependent on Unitl 
(through Unit2), even though none of the identifiers declared in 
Unitl are available to Prog. 

To compile a module, the compiler must be able to locate all units 
the module depends upon, either directly or indirectly. So, to 
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Note for C and other 
language users: The uses 
clauses of a Turbo Pascal 

program provide the "make" 
logic information traditionally 
found in make or project files 
of other languages. With the 

uses clause, Turbo Pascal 
can build all the depen­

dency information into the 
module itself and reduce the 

chance for error. 

Circular unit 

compile Prog, the compiler must be able to locate both Unitl and 
Unit2, or an error occurs. 

When changes are made in the interface part of a unit, other units 
using the unit must be recompiled. If you use Make or Build, the 
compiler does this for you automatically. If changes are made 
only to the implementation or the initialization part, other units 
that use the unit need not be recompiled. In the previous example, 
if the interface part of Unitl is changed (for example, C = 2) Unit2 
must be recompiled, but changing the implementation part (for 
example, d = 1) doesn't require recompiling Unit2. 

Turbo Pascal can tell when the interface part of a unit has 
changed by computing a unit version number when the unit is 
compiled. In the preceding example, when Unit2 is compiled, the 
current version number of Unitl is saved in the compiled version 
of Unit2. When Prog is compiled, the version number of Unitl is 
checked against the version number stored in Unit2. If the version 
numbers don't match (indicating that a change was made in the 
interface part of Unitl because Unit2 was compiled), the compiler 
reports an error or recompiles Unit2, depending on the mode of 
com pila tion. 

references If you place a uses clause in the implementation section of a unit, 
you hide the inner details of the unit referenced in the uses 
clause; the referenced unit is private and not available to the 
program or unit using the unit it's referenced in. You can use this 
technique to construct mutually-dependent units. 

The following program demonstrates how two units can "use" 
each other: 
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program Circular; 
{ Display text using WriteXY } 

uses 
Crt, Display; 

begin 
ClrScr; 
WriteXY{l, 1, 'Upper left corner of screen'); 
WriteXY{1000, 1000, 'Way off the screen'); 
WriteXY{81 - Length{'Back to reality'), 15, 'Back to reality'); 

end. 
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The main program, Circular, uses a unit named Display: 

unit Display; 
{ Contains a simple video display routine 

interface 

procedure WriteXY(X, Y: Integer; Message: String); 

implementation 
uses 

Crt, Error; 

procedure WriteXY(X, Y: Integer; Message: String); 
begin 

if (X in [1 .. 80)) and (Y in [1 .. 25) then 
begin 

GoToXY(X, Y); 
Write (Message) ; 

end 

else 
ShowError('Invalid WriteXY coordinates'); 

end; 

end. 

The Display unit declares the WriteXY procedure in its interface 
section. The WriteXY procedure writes a message on the screen. 
The program Circular specifies the content and screen position of 
the message in the parameters passed to WriteXY. If the screen 
coordinates aren't onscreen, WriteXY calls the ShowError pro­
cedure. 

ShowError isn't in the Display unit, but in another unit, Error, 
referenced in the uses section of the Display unit's implementation 
section. This is the Error unit: 

unit Error; 
{ Contains a simple error-reporting routine 

interface 

procedure ShowError(ErrMsg: String) 

implementation 

uses 
Display; 
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Sharing other 
declarations 

procedure ShowError(ErrMsg: String); 
begin 

WriteXY(l, 25, 'Error: ' + ErrMsg); 
end; 

end. 

The Error unit is somewhat unusual: its one declared procedure, 
ShowError, uses the WriteXY procedure declared in the Display 
unit, the unit that calls the ShowError procedure. The uses clause 
in the implementation sections of both the Display and Error units 
refer to each other. This is possible because Turbo Pascal can 
compile complete interface sections for both. The compiler accepts 
a reference to a partially-compiled unit in the implementation 
section of another unit, as long as neither unit's interface section 
depends upon the other. Therefore, the units follow Pascal's strict 
rules for declaration order. 

If the interface sections are interdependent, you get a circular 
unit-reference error. 

If you want to modify the WriteXY and ShowError procedures to 
take an additional parameter that specifies a rectangular window 
onscreen, you might write this: 

procedure writeXY(SorneWindow: WindRec; X, Y: Integer; 
Message: String); 

procedure ShowError(SomeWindow: WindRec; ErrMsg: String); 

These procedures are declared in the interface sections of different 
units. Because both need to use the WindRec type, WindRec can't 
be declared in either of the interface sections-that would make 
them depend on each other. The solution is to create a third unit 
that contains only the definition of the window record: 

unit WindData; 
interface 
type 

WindRec = record 
Xl, Yl, X2, Y2: Integer; 
ForeColor, BackColor: Byte; 
Active: Boolean; 

end; 
implementation 
end. 

You can now add WindData to the uses clause in interface 
sections of both the Display and Error units. Both of these units 
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can use the new record type, but Display and Error still refer to 
each other only in their respective implementation sections. 

Mutually-dependent units can be useful in special situations, but 
use them judiciously. If you use them when the aren't needed, . 
they can make your program harder to maintain and more 
susceptible to errors. 
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1 1 

Overview of the run-time library 

To read about the Dos and 
WinOos units, see Chapter 75, 

"Interfacing with ~OS. " 

Turbo Pascal's run-time library is made up of all the standard 
units found in the TURBO.TPL file: System, Dos, Overlay, Printer, 
and Crt. This chapter briefly describes each of these units. They 
are loaded into memory with Turbo Pascal and are readily 
available to your programs. 

Five other units that aren't in TURBO.TPL but that come with 
Turbo Pascal are Strings, WinDos, Graph, Turb03, and Graph3. They 
are described briefly here also. 

System unit 

The System unit implements low-level, run-time support routines 
for all built-in features, such as file I/O, string handling, floating 
point, and dynamic memory allocation. The System unit is used 
automatically by any unit or program and doesn't need to be 
referred to in a uses clause. 

Dos and WinDos units 

The Dos and WinDos units implement a number of very useful 
operating system and file-handling routines. None of the routines 
in these units are defined by Standard Pascal, so they have been 
placed in their own modules. For a complete description of DOS 
operations, refer to a DOS programmer's reference. 
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For information on the Crt 
unit, see page 742 in 

Chapter 73, "Input and 
output. " 

For more about the Printer 
unit, see page 747 in 

Chapter 73, "Input and 
output." 

To read about the Overlay 
unit, see Chapter 78, "Using 

overlays. " 

See page 767 in Chapter 76, 
"Using nUl/-terminated 

strings," for information about 
using the Strings unit. 

Read about the Graph unit 
in Chapter 77, "Using the 

Borland Graphics Interface. " 

You'll find information on the 
Turbo3 and Graph3 units in 

the online file TURB03.INT. 
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Crt unit 

The Crt unit permits you to write programs that send their screen 
output directly to the BIOS or to video memory. The result is 
increased speed and flexibility. 

Printer unit 

The Printer unit lets you send standard Pascal output to your 
printer using Write and Writeln. 

Overlay unit 

The Overlay unit enables you to reduce your program's total run­
time memory requirements. In fact, you can write programs that 
are larger than the total available memory because only parts of 
your program will reside in memory at any given time. 

Strings unit 

With Turbo Pascal's extended syntax and the Strings unit, your 
programs can use null-terminated strings, so that they are more 
compatible with any Windows programs you write. 

Graph unit 

The Graph unit supplies a set of fast, powerful graphics routines. 
It implements the device-independent Borland graphics handler 
that supports CGA, EGA, VGA, Hercules, AT&T 400, MCGA, 
3270 PC, and 8514 graphics. The Graph unit isn't built into 
TURBO.TPL, but is on the same disk with the .BGI (Borland 
Graphic Interface) and .CHR files. 

Turbo3 and Graph3 units 

These units are provided for backward compatibility only. Turbo3 
contains two variables and several procedures no longer ' 
supported by Turbo Pascal. Graph3 supports the full set of 
graphics routines-basic, advanced, and turtlegraphics-from 
version 3.0. 
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Standard procedures and functions 

There are other standard 
procedures and functions 
a/so. You can read about 

them in Chapter 13, "Input 
and output. " 

This chapter briefly describes standard (built-in) procedures and 
functions in Turbo Pascal and the predeclared variables defined in 
the System unit. For in-depth information about a particular 
procedure, function, or predeclared variable, look it up in the 
alphabetical listing in Chapter I, "Library reference," in the 
Programmer's Reference. 

This chapter covers 

• Flow-control procedures 
• Transfer functions 
• Arithmetic functions 
• Ordinal procedures and functions 
• String procedures and functions 
• Dynamic-allocation procedures and functions 
• Pointer and address functions 
• Miscellaneous procedures and functions, 
• Predeclared variables in the System unit 

Standard procedures and functions are predeclared. Because all 
predeclared entities act as if they were declared in a block sur­
rounding the program, you can redefine the same identifier 
within the program. 
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Flow-control These are the procedures that change the flow of logic in your 
procedures program: 

Table 12.1 
Flow-control procedures Procedure 

Break 

Continue 

Exit 

Halt 

RunError 

Description 

Terminates a for, while, or repeat statement. 

Continues with the next iteration of a for, while, or 
repeat statement. 

Exits immediately from the current block. 

Stops program execution and returns to the operating 
system. 

Stops program execution and generates a run-time 
error. 

Transfer functions The Transfer functions are listed here: 

Table 12.2 
Transfer functions 

The transfer procedures Pack 
and Unpack, as defined in 

Standard Pascal, are not 
implemented by Turbo 

Pascal. 

Function 

Chr 

Ord 

Round 

Trunc 

Description 

Returns a character of a specified ordinal number. 

Returns the ordinal number of an ordinal-type value. 

Rounds a real-type value to a type Longint value. 

Truncates a real-type value to a type Longint value. 

Arithmetic functions These functions are useful in performing arithmetic operations. 
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Table 12.3 
Arithmetic functions 

When you're compiling in numeric processing mode, {$N+}, the 
return values of the floating-point routines in the System unit 
(Sqrt, Pi, Sin, and so on) are of type Extended instead of Real. 

Function 

Abs 

ArcTan 

Cos 

Exp 

Frac 

Int 

Ln 

Pi 

Description 

Returns the absolute value of the argument. 

Returns the arctangent of the argument. 

Returns the cosine of the argument. 

Returns the exponential part of the argument. 

Returns the fractional part of the argument. 

Returns the integer part of the argument. 

Returns the natural logarithm of the argument. 

Returns the value of Pi (3.1415926535897932385). 
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Table 12.3: Arithmetic functions (continued) 

Sin 

Sqr 

Sqrt 

Returns the sine of the argument. 

Returns the square of the argument. 

Returns the square root of the argument. 

Ordinal procedures The ordinal routines operate on the ordinality of a variable. 
and functions 

Table 12.4 
Ordinal procedures and 

functions 

String procedures and 
functions 

Table 12.5 
String procedures and 

functions 

Procedure 
or function 

Dee 

Ine 

High 

Low 

Odd 

Pred 

Suee 

Description 

Decrements a variable. 

Increments a variable. 

Returns the highest value in the range of the 
argument. 

Returns the lowest value in the range of the 
argument. 

Tests if the argument is an odd number. 

Returns the predecessor of the argument. 

Returns the successor of the argument. 

These procedures and functions are used on the traditional 
Pascal-style strings: 

Procedure 
or function Description 

Coneat Concatenates a sequence of strings. 

Copy Returns a substring of a string. 

Delete Deletes a substring from a string. 

Insert Inserts a substring into a string. 

Length Returns the dynamic length of a string. 

Pas Searches for a substring in a string. 

Str Converts a numeric value to its string 
representation. 

Val Converts the string value to its numeric 
representation. 
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Dynamic-allocation 
procedures and 

functions 

Table 12.6 
Dynamic-allocation 

procedures and functions 

The dynamic-allocation procedures and functions are used to 
manage the heap-a memory area that occupies all or some of the 
free memory left when a program is executed. Heap-management 
techniques are discussed in the section "The heap manager" in 
Chapter 19. 

Procedure 
or function 

Dispose 

FreeMem 

GetMem 

MaxAvail 

MemAvail 

New 

Description 

Disposes of a dynamic variable. 

Disposes of a dynamic variable of a given size. 

Creates a new dynamic variable of a given size and 
sets a pointer variable to point to it. 

Returns the size of the largest contiguous free block 
in the heap, indicating the size of the largest dynam­
ic variable that can be allocated at the time of the 
call to MaxAvail. 

Returns the number of free bytes of heap storage 
available. 

Creates a new dynamic variable and sets a pointer 
variable to point to it. 

Pointer and address The pointer and address functions are listed in this table: 
functions 
Table 12.7 

Pointer and address 
functions 

Function 

Addr 

Assigned 

CSeg 

DSeg 

Ofs 

Ptr 

Seg 

SPtr 

SSeg 

Description 

Returns the address of a specified object. 

Tests to determine if a pointer or procedural variable is 
nil. 

Returns the current value of the C5 register. 

Returns the current value of the D5 register. 

Returns the offset of a specified object. 

Converts a segment base and an offset address to a 
pointer-type value. 

Returns the segment of a specified object. 

Returns the current value of the 5P register. 

Returns the current value of the 55 register. 
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Miscellaneous routines Listed below are the procedures and functions that don't fit in any 
other category: 

Table 12.8 
Miscellaneous procedures 

and functions 

Procedure 
or function 

Exclude 

FmChar 

Hi 

Include 

La 

Move 

ParamCount 

ParamStr 

Random 

Randomize 

SizeO! 

Swap 

TypeO! 

UpCase 

Description 

Excludes an element from a set. 

Fills a specified number of contiguous bytes with a 
specified value. 

Returns the high-order byte of the argument. 

Includes an element in a set. 

Returns the.1ow-order byte of the argument. 

Copies a specified number of contiguous bytes from 
a source range to a destination range. 

Returns the number of parameters passed to the 
program on the command line. 

Returns a specified command-line parameter. 

Returns a random number. 

Initializes built-in random generator with a random 
value. 

Returns number of bytes occupied by the argument. 

Swaps the high- and low-order bytes of the 
argument. 

Points to an object type's virtual method table. 

Converts a character to uppercase. 

Predeclared variables The System unit also supplies several predeclared variables: 

Table 12.9 
Predeclared variables in the 

System unit 

Variable 

ErrorAddr 
ExitCode 
ExitProc 
FileMode 
FreeList 
FreeZero 
HeapEnd 
HeapError 
HeapOrg 
HeapPtr 
Input 
InOutRes 
Output 

Type 

Pointer 
Integer 
Pointer 
Byte 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Pointer 
Text 
Integer 
Text 
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Description 

Run-time error address 
Exit code 
Exit procedure 
File open mode 
Free heap-block list 
Free zero 
Heap end 
Heap-error function 
Heap origin 
Heap pointer 
Input standard file 
IIO result buffer 
Output standard file 
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Table 12.9: Predeclared variables in the System unit (continued) 

OvrCodeList Word Overlay code-segment list 
OvrDebugPtr Pointer Overlay-debugger hook 
OvrDosHandle Word Overlay DOS handle 
OvrEmsHandle Word Overlay EMS handle 
OvrHeapEnd Word Overlay-buffer end 
OvrHeapOrg Word Overlay-buffer origin 
OvrHeapPtr Word Overlay-buffer pointer 
OvrHeapsize Word Initial overlay-buffer size 
OvrLoadList Word Loaded-overlays list 
Prefixseg Word Program Segment Prefix 
Randseed Longint Random seed 
Sa veIn tOO Pointer Saved interrupt $00 
saveInt02 Pointer Saved interrupt $02 
saveIntlB Pointer Saved interrupt $1B 
saveInt21 Pointer Saved interrupt $21 
saveInt23 Pointer Saved interrupt $23 
saveInt24 Pointer Saved interrupt $24 
saveInt34 Pointer Saved interrupt $34 
saveInt35 Pointer Saved interrupt $35 
saveInt36 Pointer Saved interrupt $36 
saveInt37 Pointer Saved interrupt $37 
saveInt38 Pointer Saved interrupt $38 
saveInt39 Pointer Saved interrupt $39 
saveInt3A Pointer Saved interrupt $3A 
saveInt3B Pointer Saved interrupt $3B 
saveInt3C Pointer Saved interrupt $3C 
saveInt3D Pointer Saved interrupt $3D 
saveInt3E Pointer Saved interrupt $3E 
saveInt3F Pointer Saved interrupt $3F 
saveInt75 Pointer Saved interrupt $75 
seg0040 Word Selector for segment $0040 
segAOOO Word Selector for segment $AOOO 
segBOOO Word Selector for segment $BOOO 
segB800 Word Selector for segment $B800 
selectorInc Word Selector increment 
5 tackLim it Word Minimum stack pointer 
Test8087 Byte 80x87 test result 

For more information about these variables,look them up in the 
alphabetical listing in Chapter I, "Library reference," of the 
Programmer's Reference. 
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c H 

Table 13.1 
Input and output procedures 

and functions 

A p T E R 

13 

Input and output 

This chapter describes the standard (or built-in) input and output 
(I/O) procedures and functions of Turbo Pascal; you'll find them 
in the System unit. It also discusses input and output issues such 
as file input and output, devices, using the Crt unit, printing, and 
text-file device drivers. 

Procedure 
or function 

Append 

Assign 

BlockRead 

BlockWrite 

ChDir 

Close 

Eo! 

Eoln 

Erase 

FilePos 

FileSize 

Flush 

GetDir 

Description 

Opens an existing text file for appending. 

Assigns the name of an external file to a file variable. 

Reads one or more records from an untyped file. 

Writes one or more records into an untyped file. 

Changes the current directory. 

Closes an open file. 

Returns the end-of-file status of a file. 

Returns the end-of-line status of a text file. 

Erases an external file. 

Returns the current file position of a typed or 
untyped file. 

Returns the current size of a file; not used for text 
files. 

Flushes the buffer of an output text file. 

Returns the current directory of a specified drive. 
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Table 13.1: Input and output procedures and functions (continued) 

IOResult 

MkDir 

Read 

Readln 

Rename 

Reset 

Rewrite 

RmDir 

Seek 

SeekEof 

SeekEoln 

SetTextBuf 

Truncate 

Write 

Writeln 

Returns an integer value that is the status of the last 
110 function performed. 

Creates a subdirectory. 

Reads one or more values from a file into one or 
more variables. 

Does what a Read does and then skips to the 
beginning of the next line in the text file. 

Renames an external file. 

Opens an existing file. 

Creates and opens a new file. 

Removes an empty subdirectory. 

Moves the current position of a typed or untyped 
file to a specified component. Not used with text 
files. I 

Returns the end-of-file status of a text file. 

Returns the end-of-line status of a text file. 

Assigns an 1/ 0 buffer to a text file. 

Truncates a typed or untyped file at the current file 
position. 

Writes one or more values to a file. 

Does the same as a Write, and then writes an end­
of-line marker to the text file. 

File input and output 

The syntax for writing file 
types is given in the section 

"File types" on page 42. 
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A Pascal file variable is any variable whose type is a file type. 
There are three classes of Pascal files: typed, text, and untyped. 

Before a file variable can be used, it must be associated with an 
external file through a call to the Assign procedure. An external 
file is typically a named disk file, but it can also be a device, such 
as the keyboard or the display. The external file stores the infor­
mation written to the file or supplies the information read from 
the file. 

Once the association with an external file is established, the file 
variable must be "opened" to prepare it for input or output. An 
existing file can be opened via the Reset procedure, and a new file 
can be created and opened via the Rewrite procedure. Text files 
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Text files 
In Turbo Pascal, the type 

Text is distinct from the type 
file of Char. 

opened with Reset are read-only, and text files opened with 
Rewrite and Append are write-only. Nontext files always allow 
both reading and writing whether or not they were opened with 
Reset or Rewrite. 

Every file is a linear sequence of components, each of which has 
the component type (or record type) of the file. Each component 
has a component number. The first component of a file is con­
sidered to be component zero. 

Files are normally accessed sequentially; that is, when a component 
is read using the standard procedure Read or written using the 
standard procedure Write, the current file position moves to the 
next numerically ordered file component. Typed files and 
untyped files can also be accessed randomly via the standarq 
procedure Seek, which moves the current file position to a speci­
fied component. The standard functions FilePos and FileSize can be 
used to determine the current file position and the current file 
size. 

When a program completes processing a file, the file must be 
closed using the standard procedure Close. After a file is closed, its 
associated external file is updated. The file variable can then be 
associated with another external file. 

By default, all calls to standard I/O procedures and functions are 
automatically checked for errors: If an error occurs, the program 
terminates, displaying a run-time error message. This automatic 
checking can be turned on and off using the {$I+} and {$I-} com­
piler directives. When I/O checking is off-that is, when a proce­
dure or function call is compiled in the {$I-} state-an I/O error 
doesn't cause the program to halt. To check the result of an I/O 
operation, you must call the standard function IOResult instead. 

):' ou must call the IOResult function to clear whatever error might 
have occurred, even if you aren't interested in the error. If you 
don't and {$I+} is the current state, the next I/O function call fails 
with the lingering IOResult error. 

This section summarizes 1/ a using file variables of the standard 
type Text. 

When a text file is opened, the external file is interpreted in a 
special way: It's considered to represent a sequence of characters 
formatted into lines, where each line is terminated by an end-of-
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line marker (a carriage-return character, possibly followed by a 
linefeed character). 

For text files, there are special forms of Read and Write that let you 
read and write values that aren't of type Char. Such values are 
automatically translated to and from their character representa­
tion. For example, Read(F, 1), where I is a type Integer variable, 
reads a sequence of digits, interprets that sequence as a decimal 
integer, and stores it in 1. 

Turbo Pascal defines two standard text-file variables, Input and 
Output. The standard file variable Input is a read-only file 
associated with the operating system's standard input file 
(typically the keyboard). The standard file variable Output is a 
write-only file associated with the operating system's standard 
output file (typically the display). Input and Output are 
automatically opened before a program begins execution, as if the 
following statements were executed: 

Assign(Input, "); 
Reset (Input) ; 
Assign (Output, "); 
Rewrite (Output) ; 

Input and Output are automatically closed after a program finishes 
executing. 

If a program uses the Crt standard unit, Input and Output no 
longer refer to the standard input and output files. 

Some of the standard I/O routines that work on text files don't 
need to have a file variable explicitly given as a parameter. If the 
file parameter is omitted, Input or Output is assumed by default, 
depending on whether the procedure or function is input- or 
output-oriented. For example, Read(X) corresponds to Read(Input, 
X) and Write(X) corresponds to Write(Output, X). 

If you do specify a file when calling one of the input or output 
routines that work on text files, the file must be associated with an 
external file using Assign, and opened using Reset, Rewrite, or 
Append. A run-time error occurs if you pass a file that was opened 
with Reset to an output-oriented procedure or function. Likewise, 
it's an error to pass a file that was opened with Rewrite or Append 
to an input-oriented procedure or function. 
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Untyped files 

The FileMode 
variable 

New files created using 
Rewrite are always opened 

in read/write mode, 
corresponding to 

FileMode=2. 

Untyped files are low-level I/O channels primarily used for direct 
access to any disk file regardless of type and structuring. An un­
typed file is declared with the word file and nothing more. For 
example, 

var 
DataFile: file; 

For untyped files, the Reset and Rewrite procedures allow an extra 
parameter to specify the record size used in data transfers. For 
historical reasons, the default record size is 128 bytes. A record 
size of 1 is the only value that correctly reflects the exact size of 
any file, because no partial records are possible when the record 
size is 1. 

Except for Read and Write, all typed-file standard procedures and 
functions are also allowed on untyped files. Instead of Read and 
Write, two procedures called BlockRead and BlockWrite are used for 
high-speed data transfers. 

The FileMode variable defined by the System unit determines the 
access code to pass to DOS when typed and untyped files (not text 
files) are opened using the Reset procedure. 

The default FileMode is 2, which allows both reading and writing. 
Assigning another value to FileMode causes all subsequent Resets 
to use that mode. 

The range of valid FileMode values depends on the version of DOS 
in use. For all versions, however, the following modes are 
defined: 

o Read only 
1 Write only 
2 Read/Write 

DOS version 3.x and higher defines additional modes, which are 
primarily concerned with file-sharing on networks. (For more 
details, see your DOS programmer's reference manual.) 
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Devices in Turbo Pascal 

DOS devices 

Turbo Pascal and the DOS operating system regard external 
hardware, such as the keyboard, the display, and the printer, as 
devices. From the programmer's point of view, a device is treated 
as a file and is operated on through the same standard procedures 
and functions as files. 

Turbo Pascal supports two kinds of devices: DOS devices and 
text-file devices. 

DOS devices are implemented through reserved file names that 
have a special meaning attached to them. DOS devices are com­
pletely transparent-in fact, Turbo Pascal isn't even aware when a 
file variable refers to a device instead of a disk file. For example, 
the program 

var 
Lst: Text; 

begin 
Assign(Lst, 'LPT1'); 
Rewrite(Lst); 
Writeln(Lst, 'Hello World ... '); 
Close(Lst) ; 

end. 

writes the string "Hello World ... " on the printer, even though the 
syntax for doing so· is exactly the same as for a disk file. 

The devices implemented by DOS are used for obtaining or 
presenting legible input or output. Therefore, DOS devices are 
normally used only in connection with text files. On rare occa­
sions, untyped files can also be useful for interfacing with DOS 
devices. 

The CON device CON refers to the CONsole device, in which output is sent to the 
display, and input is obtained from the keyboard. The Input and 
Output standard files and all files assigned an empty name refer to 
the CON device when input or output isn't redirected. 

Input from the CON device is line-oriented and uses the line­
editing facilities described in your DOS manual. Characters are 
read from a line buffer, and when the buffer becomes empty, a 
new line is input. 
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The LPTl, LPT2, and 
LPT3 devices 

The COM 1 and COM2 
devices 

The NUL device 

Text-file devices 

An end-of-file character is generated by pressing Ctrl+Z, after 
which the Eo! function will return True. 

The line-printer devices are the three possible printers you can 
use. If only one printer is connected, it's usually referred to as 
LPTl, for which the synonym can also be used. 

The line-printer devices are output-only devices-an attempt to 
Reset a file assigned to one of these generates an immediate end­
of-file. 

The standard unit Printer declares a text-file variable called Lst, 
and makes it refer to the LPTI device. To easily write something 
on the printer from one of your programs, include Printer in the 
program's uses clause, and use Write(Lst, ... ) and Writeln(Lst, .. .) to 
produce your output. 

The communication-port devices are the two serial communi­
cation ports. The synonym AUX can be used instead of COMl. 

The NUL device ignores anything written to it, and generates an 
immediate end-of-file when read from. You should use this when 
you don't want to create a particular file, but the program 
requires an input or output file name. 

Text-file devices are used to implement devices unsupported by 
DOS or to provide another set of features similar to those 
supplied by another DOS device. A good example of a text-file 
device is the CRT device implemented by the Crt standard unit. It 
provides an interface to the display and the keyboard, like the 
CON device in DOS, but the CRT device is much faster and 
supports such invaluable features as color and windows. 

Unlike DOS devices, text-file devices have no reserved file names; 
in fact, they have no file names at all. Instead, a file is associated 
with a text-file device through a customized Assign procedure. 
For example, the Crt standard unit implements an AssignCrt 
procedure that associates text files with the CRT window. 
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Input and output with the Crt unit 

Using the Crt unit 

Windows 

142 

The Crt unit implements a range of powerful routines that give 
you full control of your PC's features, such as screen mode 
control, extended keyboard codes, colors, windows, and sound. 
Crt can only be used in programs that run on IBM PCs, A Ts, 
PS/2s, and true compatibles. 

One of the major advantages to using Crt is the added speed and 
flexibility of screen output operations. Programs that don't use 
the Crt unit send their screen output through DOS, which adds a 
lot of overhead. With the Crt unit, output is sent directly to the 
BIOS or, for even faster operation, directly to video memory. 

To use the Crt unit, include it in your program's uses clause as 
you would any other unit: 

uses Crt; 

The initialization code of the Crt unit assigns the Input and Output 
standard text files to refer to the CRT instead of to DOS's standard 
input and output files. These statements execute at the beginning 
of a program: 

AssignCrt(Input); Reset (Input) ; 
AssignCrt(Output); Rewrite (Output) ; 

This means that I/O redirection of the Input and Output files is no 
longer possible unless these files are explicitly assigned back to 
standard input and output by executing this: 

Assign(Input, "); Reset (Input) ; 
Assign (Output, "); Rewrite (Output) ; 

Crt supports a simple yet powerful form of windows. The Window 
procedure lets you define a window anywhere on the screen. 
When you write in such a window, the window behaves exactly 
as if you were using the entire screen, leaving the rest of the 
screen untouched. In other words, the screen outside the window 
isn't accessible. Inside the window, lines can be inserted and 
deleted, the cursor wraps around at the right edge, and the text 
scrolls when the cursor reaches the bottom line. 
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All screen coordinates, except the ones used to define a window, 
are relative to the current window, and screen coordinates (1,1) 
correspond to the upper left corner of the window. 

The default window is the entire screen. 

Special charactArs When writing to Output or a file that has been assigned to the 
CRT, the following control characters have special meanings: 

Table 13.2 
Control characters Char 

#7 

#8 

#10 

#13 

Name 

BELL 

BS 

LF 

CR 

Description 

Emits a beep from the internal speaker. 

Moves the cursor left one column. If the cursor is 
already at the left edge of the current window, 
nothing happens. 

Moves the cursor down one line. If the cursor is 
already at the bottom of the current window, the 
window is scrolled up one line. 

Returns the cursor to the left edge of the current 
window. 

Line input When reading from Input or from a text file that has been assigned 
to Crt, text is input one line at a time. The line is stored in the text 
file's internal buffer, and when variables are read, this buffer is 
used as the input source. Whenever the buffer has been emptied, 
a new line is input. 

When entering lines, the following editing keys are available: 

Table 13.3 
Line input editing keys 
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Editing key Description 

Backspace 

Esc 

Enter 

Ctrl+S 

Ctrl+D 

Ctrl+A 

Ctrl+F 

Ctrl+Z 

Deletes the last character entered. 

Deletes the entire input line. 

Terminates the input line and stores the end-of-line 
marker (carriage return/line feed) in the buffer. 

Same as Backspace. 

Recalls one character from the last input line. 

Same as Esc. 

Recalls the last input line. 

Terminates the input line and generates an end-of-file 
marker. 

143 



Crt procedures 
and functions 

Table 13.4 
Crt unit procedures and 

functions 

See the Programmer's 
Reference for more details 

about using the Crt 
procedures and functions. 

Ctrl+Zwill only generate an end-of-file marker if the CheckEOF 
variable has been set to True; it's False by default. 

To test keyboard status and input single characters under 
program control, use the KeyPressed and ReadKey functions. 

The following table lists the procedures and functions defined in 
the Crt unit. 

Procedure 
or function 

AssignCrt 

ClrEol 

ClrScr 

Delay 

Description 

Associates a text file with the CRT window. 

Clears all the characters from the cursor position to 
the end of the line. 

Clears the screen and returns cursor to the upper 
left-hand corner. 

Delays a specified number of milliseconds. 

DelLine Deletes the line containing the cursor and moves all 
lines below that line one line up. The bottom line is 
cleared. 

GotoXY Positions the cursor. X is the horizontal position. Y is 
the vertical position. 

High Video Selects high-intensity characters. 

InsLine Inserts an empty line at the cursor position. 

KeyPressed Returns True if a key has been pressed on the 
keyboard. 

Low Video Selects low-intensity characters. 

Norm Video Selects normal characters. 

NoSound Turns off the internal speaker. 

Sound Starts the internal speaker. 

TextBackground Selects the background color. 

TextColor Selects the foreground character color. 

TextMode Selects a specific text mode. 

Window Defines a text window onscreen. 

ReadKey Reads a character from the keyboard. 
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Crt unit constants 

Table 13.4: Crt unit procedures and functions (continued) 

WhereX Returns the x-coordinate of the current cursor 
location, relative to the current window. 

WhereY Returns the y-coordinate of the current cursor 
location, relative to the current window. 

and variables The Crt unit has several constants that your programs can use. To 
learn more about using them, look them up in Chapter 1 of the 
Programmer's Reference. You'll find them grouped like this: 

Table 13.5 
Crt unit constants 

Table 13.6 
crt unit variables 

Constant group Description 

Crt mode constants Graphics-mode constants used as parameters 
for the TextMode procedure. 

Text color constants Constants used to set the colors of the CRT 
window using the TextColor and 
TextBackground procedures. 

For example, to find the value of a constant that will color the text 
in your program red, look up Text Color constants, and you'll 
discover that the constant Red has a value of 4. 
These are the variables in the Crt unit and the functions they 
perform: 

Variable 

CheckBreak 

CheckEOF 

CheckSnow 

Direct Video 

LastMode 

TextAttr 

WindMin 

WindMax 

Description 

Enables and disables checks for Ctrl+Break. 

Enables and disables the end-of-file character. 

Enables and disables "snow checking". 

Enables and disables direct memory access for Write 
and Writeln statements that output to the screen. 

Stores the current video mode when each time 
TextMode is called. 

Stores the currently-selected text attributes. 

Stores the screen coordinates of the upper-left comer 
of the current window. 

Stores the screen coordinates of the lower-right 
corner of the current window. 
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Text-file device drivers 
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Turbo Pascal lets you define your own text-file device drivers. A 
text-file device driver is a set of four functions that completely 
implement an interface between Turbo Pascal's file system and 
some device. 

The four functions that define each device driver are Open, InOut, 
Flush, and Close. The function header of each function is 

function DeviceFunc(var F: TTextRec): Integer; 

where TTextRec is the text file record type defined in the "Internal 
data formats," section in Chapter 19. Each function must be 
compiled in the {$F+} state to force it to use the far call model. The 
return value of a device-interface function becomes the value 
returned by IOResult. If the return value is zero, the operation was 
successful. 

To associate the device-interface functions with a specific file, you 
must write a customized Assign procedure (like the AssignCrt 
procedure in the Crt unit). The Assign procedure must assign the 
addresses of the four device-interface functions to the four func­
tion pointers in the text file variable. In addition, it should store 
the fmClosed "magic" constant in the Mode field, store the size of 
the text file buffer in BufSize, store a pointer to the text file buffer 
in BufPtr, and clear the Name string. 

For example, assuming that the four device-interface functions are 
called DevOpen, DevlnOut, DevFlush, and DevClose, the Assign 
procedure might look like this: 

procedure AssignDev(var F: Text); 
begin 

with TextRec(F) do 
begin 

Mode := fmClosed; 
BufSize := SizeOf(Buffer); 
BufPtr := @Buffer; 
OpenFunc := @DevOpen; 
InOutFunc := @DevInOut; 
FlushFunc := @DevFlush; 
CloseFunc := @DevClose; 
Name[O] := #0; 

end; 
end; 
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The Open 
function 

The InOut 

The device-interface functions can use the UserData field in the file 
record to store private information. This field isn't modified by 
the Turbo Pascal file system at any time. 

The Open function is called by the Reset, Rewrite, and Append 
standard procedures to open a text file associated with a device. 
On entry, the Mode field contains fmlnput, fmOutput, or fmlnOut to 
indicate whether the Open function was called from Reset, Rewrite, 
or Append. 

The Open function prepares the file for input or output, according 
to the Mode value. If Mode specifiedfmlnOut (indicating that Open 
was called from Append), it must be changed to fmOutput before 
Open returns. 

Open is always called before any of the other device-interface 
functions. For that reason, AssignDev only initializes the OpenFunc 
field,leaving initialization of the remaining vectors up to Open. 
Based on Mode, Open can then install pointers to either input- or 
output-oriented functions. This saves the InOut, Flush functions 
and the Close procedure from determining the current mode. 

function The InOut function is called by the Read, Readln, Write, Writeln, 
Eof, Eoln, SeekEof, SeekEoln, and Close standard procedures and 
functions whenever input or output from the device is required. 

The Flush function 

When Mode is fmlnput, the InOut function reads up to BufSize 
characters into BufPtrA , and returns the number of characters read 
in BufEnd. In addition, it stores zero in BufPos. If the InOut 
function returns zero in BufEnd as a result of an input request, Eof 
becomes True for the file. 

When Mode is fmOutput, the InOut function writes BufPos 
characters from BufPtrA , and returns zero in BufPos. 

The Flush function is called at the end of each Read, Readln, Write, 
and Writeln. It can optionally flush the text file buffer. 

Chapter 13, Input and output 147 



The Close 

If Mode is jmlnput, the Flush function can store zero in BufPos and 
BufEnd to flush the remaining (unread) characters in the buffer. 
This feature is seldom used. 

If Mode is jmOutput, the Flush function can write the contents of 
the buffer exactly like the InOut function, which ensures that text 
written to the device appears on the device immediately. If Flush 
does nothing, the text won't appear on the device until the buffer 
becomes full or the file is closed. 

function The Close function is called by the Close standard procedure to 
close a text file associated with a device. (The Reset, Rewrite, and 
Append procedures also call Close if the file they are opening is 
already open.) If Mode is jmOutput, then before calling Close, 
Turbo Pascal's file system calls the InOut function to ensure that 
all characters have been written to the device. 
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Chapter 74, Using the 80x87 

A p T E R 

14 

Using the 80x87 

There are two kinds of numbers you can work with in Turbo 
Pascal: integers (Shortint, Integer, Longint, Byte, Word) and reals 
(Real, Single, Double, Extended, Camp). Reals are also known as 
floating-point numbers. The 80x86 family of processors is 
designed to handle integer values easily, but handling reals is 
considerably more difficult. To improve floating-point perform­
ance, the 80x86 family of processors has a corresponding family of 
math coprocessors, the 80x87s. 

The 80x87 is a special hardware numeric processor that can be 
installed in your PC. It executes floating-point instructions very 
quickly, so if you use floating point often, you'll probably want a 
numeric coprocessor or a 80486 processor, which has a numeric 
coprocessor built in. 

Turbo Pascal provides optimal floating-point performance 
whether or not you have an 80x87: 

• For programs running on any PC, with or without an 80x87, 
Turbo Pascal provides the Real type and an associated library of 
software routines that handle floating-point operations. The 
Real type occupies 6 bytes of memory, providing a range of 2.9 
x 10-39 to 1.7 X 1038 with 11 to 12 significant digits. The software 
floating-point library is optimized for speed and size, trading in 
some of the fancier features provided by the 80x87 processor . 

• If you need the added precision and flexibility of the 80x87, you 
can instruct Turbo Pascal to produce code that uses the 80x87 
chip. This gives you access to four additional real types (Single, 
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Double, Extended, and Camp), and an Extended floating-point 
range of 3.4 x 10-4951 to 1.1 X 104932 with 19 to 20 significant 
digits. 

You switch between the two different models of floating-point 
code generation using the $N compiler directive or the 80x87 
Code check box in the Options I Compiler dialog box. The default 
state is {$N-}, and in this state, the compiler uses the 6-byte 
floating-point library, allowing you to operate only on variables of 
type Real. In the {$N+} state, the compiler generates code for the 
80x87, giving you increased precision and access to the four 
additional real types. 

When you're compiling in 80x87 Code mode, {$N+},the return 
values of the floating-point routines in the System unit (Sqrt, Pi, 
Sin, and so on) are of type Extended instead of Real: 

{$N+} 
begin 

Writeln(Pi) i 

end. 

{$N-} 
begin 

Writeln(Pi) 

end. 

{ 3.14159265358979E+OOOO } 

{ 3.1415926536E+OO } 

Even if you don't have an 80x87 in your machine, you can instruct 
TurboPascal to include a run-time library that emulates the 
numeric coprocessor. Then, if an 80x87 is present, it's used. If it's 
not present, the run-time library emulates it, although your 
program runs a bit slower than if an 80x87 were present. 

The $E compiler directive and the Emulation check box in the 
Options I Compiler dialog box are used to enable and disable 
80x87 emulation. The default state is {$E+}, and in this state, the 
full80x87 emulator is automatically included in programs that 
use the 80x87. In the {$E-} state, a substantially smaller floating­
point library is used, and the final.EXE file can run only on 
machines with an 80x87. 

The $E compiler directive has no effect if used in a unit; it only 
applies to the compilation of a program. Also, if the program is 
compiled in the {$N-} state, and if all the units used by the 
program were compiled with {$N-}, then an 80x87 run-time 
library isn't required, and the $E compiler directive is ignored. 
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The remainder of this chapter discusses special issues concerning 
Turbo Pascal programs that use the 80x87 coprocessor. 

The 80x87 data types 

Chapter 74, Using the 80x87 

For programs that use the 80x87, Turbo Pascal provides four 
floating-point types in addition to the type Real. 

• The Single type is the smallest format you can use with 
floating-point numbers. It occupies 4 bytes of memory, 
providing a range of 1.5 x 10-45 to 3.4 X 1038 with 7 to 8 
significant digits. 

• The Double type occupies 8 bytes of memory, providing a range 
of 5.0 x 10-324 to 1.7 X 10308 with 15 to 16 significant digits. 

• The Extended type is the largest floating-point type supported 
by the 80x87.1t occupies 10 bytes of memory, providing a range 
of 3.4 x 10-4932 to 1.1 X 104932 with 19 to 20 significant digits. Any 
arithmetic involving real-type values is performed with the 
range and precision of the Extended type. 

• The Comp type stores integral values in 8 bytes, providing a . 
range of _263+ 1 to 263-1, which is approximately -9.2 x 1018 to 
9.2 X 1018. Camp can be compared to a double-precision Longint, 
but it's considered a real type because all arithmetic done with 
Comp uses the 80x87 coprocessor. Comp is appropriate for 
representing monetary values as integral values of cents or mils 
(thousandths) in business applications. 

Whether or not you have an 80x87 processor, the 6-byte Real type 
is always available, so you don't have to modify your source code 
when switching to the 80x87, and you can still read data files 
generated by programs that use software floating point. 

Note, however, that 80x87 floating-point calculations on variables 
of type Real are slightly slower than on other types. This is 
because the 80x87 can't directly process the Real format-instead, 
calls must be made to library routines to convert Real values to 
Extended before operating on them. If you're concerned with 
optimum speed and always run on a system with an 80x87, you 
might want to use the Single, Double, Extended, and Comp types 
exclusively. 
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The Extended type is the basis of all floating-point computations 
with the 80x87. Turbo Pascal uses the Extended format to store all 
non-integer numeric constants and evaluates all non-integer 
numeric expressions using extended precision. The entire right 
side of the following assignment, for example, is computed in 
Extended before being converted to the type on the left side: 

{$N+} 
var 

X IA IB IC: Real; 
begin 

X := (B + Sqrt(B * B - A * Cll / A; 
end; 

Turbo Pascal automatically performs computations using the 
precision and range of the Extended type. The added precision 
means smaller round-off errors, and the additional range means 
overflow and underflow are less common. 

You can go beyond Turbo Pascal's automatic Extended capabilities. 
For example, you can declare variables used for intermediate 
results to be of type Extended. The following example computes a 
sum of products: 

var 
Sum: Single; 
X, Y: array[1 .. 100] of Single; 
I: Integer; 
T: Extended; 

begin 
T := 0.0; 
for I := 1 to 100 do 

begin 
XlI] := I; 
Y[I [ := I; 
T := T + XlI] * Y[I]; 

end; 
Sum := T; 

end; 

{ For intermediate results } 

Had T been declared Single, the assignment to T would have 
caused a round-off error at the limit of single precision at each 
loop entry. But because T is Extended, all round-off errors are at 
the limit of extended precision, except for the one resulting from 
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the assignment of T to Sum. Fewer round-off errors mean more 
accurate results. 

You can also declare formal value parameters and function results 
to be of type Extended. This avoids unnecessary conversions 
between numeric types, which can result in loss of accuracy. For 
example, 

function Area {Radius: Extended): Extended; 
begin 

Area := pi * Radius * Radius; 
end; 

Comparing reals 

Because real-type values are approximations, the results of 
comparing values of different real types aren't always as 
expected. For example, if X is a variable of type Single and Y is a 
variable of type Double, then the following statements are False: 

x := 1 / 3; 
Y := 1 / 3; 
Writeln(X = Y); 

This is because X is accurate only to 7 to 8 digits, where Y is 
accurate to 15 to 16 digits, and when both are converted to 
Extended, they differ after 7 to 8 digits. Similarly, the statements 

x := 1 / 3; 
Writeln{X = 1 / 3); 

are False, because the result of 1/3 in the Writeln statement is 
calculated with 20 significant digits. 

The 80x87 evaluation stack 

Chapter 74, Using the BOxB7 

The 80x87 coprocessor has an internal evaluation stack that can be 
as deep as eight levels. Accessing a value on the 80x87 stack is 
much faster than accessing a variable in memory. To achieve the 
best possible performance, Turbo Pascal uses the 80x87's stack for 
storing temporary results. 

In theory, very complicated real-type expressions can overflow 
the 80x87 stack. This isn't likely to occur, however, because the 
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expression would need to generate more than eight temporary 
results. 

A more tangible danger lies in recursive function calls. If such 
constructs aren't coded correctly, they can easily overlow the 
SOxS7 stack. 

Consider the following procedure that calculates Fibonacci 
numbers using recursion: 

function Fib(N: Integer): Extended; 
begin 

if N = a then 
Fib := 0.0 

else 
if N = 1 then 

Fib : = 1. a 
else 

Fib := Fib(N - 1) + Fib(N - 2); 
end; 

A call to this version of Fib will cause an SOxS7 stack overflow for 
values of N larger than S. This is because the calculation of the last 
assignment requires a temporary on the SOxS7 stack to store the 
result of Fib(N-1). Each recursive invocation allocates one such 
temporary, causing an overflow the ninth time. The correct 
construct in this case is this: 

function Fib(N: Integer): Extended; 
var 

F1, F2: Extended; 
begin 

if N = a then 
Fib := 0.0 

else 

end; 

if N = 1 then 
Fib := 1.0 

else 
begin 

F1 := Fib(N - 1); 
F2 := Fib(N - 2); 
Fib := F1 + F2; 

end; 

The temporary results are now stored in variables allocated on the 
SOS6 stack. (The SOS6 stack can also overflow I but this would 
usually require many more recursive calls.) 
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Writing reals with the 80x87 

In the {$N+} state, the Write and Writeln standard procedures 
output four digits, not two, for the exponent in a floating-point 
decimal string to provide for the extended numeric range. The Str 
standard procedure also returns a four-digit exponent when 
floating-point format is selected. 

Units using the 80x87 

Detecting the 
80x87 

Chapter 74, Using the BOxB7 

Units that use the 80x87 can be used only by other units or 
programs that are compiled in the {$N+} state. 

The fact that a unit uses the 80x87 is determined by whether it 
contains 80x87 instructions-not by the state of the $N compiler 
directive at the time of its compilation. This makes the compiler 
more forgiving in cases where you accidentally compile a unit 
that doesn't use the 80x87 in the {$N+} state. 

When you compile in numeric processing mode ({$N+}), the 
return values of the floating-point routines in the System unit­
Sqrt, Pi, Sin, and so on-are of type Extended instead of Real. 

The Turbo Pascal 80x87 run-time library built into your program 
(compiled with {$N+}) includes startup code that automatically 
detects the presence of an 80x87 chip. If an 80x87 is available, then 
the program will use it. If one isn't present, the program will use 
the emulation run-time library. If the program was compiled in 
the {$E-} state, and an 80x87 could not be detected at startup, the 
program displays "Numeric coprocessor required," and ends. 

You might want to override this default auto detection behavior 
occasionally. For example, your own system might have an 80x87, 
but you want to verify that your program will work as intended 
on systems without a coprocessor. Or your program might need 
to run on a PC-compatible system, but that particular system 
returns incorrect information to the auto detection logic (saying 
that an 80x87 is present when it's not, or vice versa). 

Turbo Pascal provides an option for overriding the startup code's 
default autodetection logic: the 87 environment variable. 
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Table 14.1 
Test8087 variable values 

You set the 87 environment variable at the DOS prompt with the 
SET command, like this: 

SET 87 = y 

or 

SET 87 = N 

Setting the 87 environment variable to N (for no) tells the startup 
code that you don't want to use the 80x87, even though it might 
be present in the system. Conversely, setting the 87 environment 
variable to Y (for yes) means that the coprocessor is there, and 
you want the program to use it. . 

If you set S7 = Y when there is no 80x87 available, your program 
will either crash or hang! 

If the S7 environment variable has been defined (to any value) but 
you want to undefine it, enter this at the DOS prompt: 

SET 87 = 

If an 87 = Y entry is present in the DOS environment, or if the 
autodetection logic succeeds in detecting a coprocessor, the 
startup code executes additional checks to determine what kind of 
coprocessor it's (8087, 80287, or 80387). This is required so that 
Turbo Pascal can correctly handle certain incompatibilities that 
exist between the different coprocessors. 

The result of the auto detection and the coprocessor classification 
is stored in the TestSDS7 variable (which is declared by the System 
unit). The following values are defined: 

Value 

o 
1 
2 
3 

Definition 

No coprocessor detected 
8087 detected 
80287 detected 
80387 or 80486 detected 

Your program can examine the Test8DS7 variable to determine the 
characteristics of the system it's running on. In particular, TestSDS7 
can be examined to determine if floating-point instructions are 
being emulated or truly executed. 
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Emulation in 
assembly 

language 

Chapter 74, Using the 80x87 . 

When linking in object files using {$L filename} directives, make 
sure that these object files were compiled with the 80x87 
emulation enabled. For example, if you're using 80x87 
instructions in assembly language external procedures, enable 
emulation when you assemble the .ASM files into .OBJ files. 
Otherwise, the 80x87 instructions can't be emulated on machines 
without an 80x87. Use Turbo Assembler's IE command-line switch 
to enable emulation. 
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Read more about the 
differences between 

standard Pascal-style and 
nUll-terminated strings on 

page 767. 

To read about the Strings 
unit, see Chapter 76, "Using 

nUll-terminated strings. N 
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Interfacing with DOS 

The Dos and WinDos units implement a number of operating 
system and file-handling routines. None of the routines in the Dos 
and WinDos units are defined by Standard Pascal, so they have 
been placed in their own modules. 

For a complete description of DOS operations, refer to a DOS 
programmer's reference manual. 

The primary difference between the Dos and WinDos units is that 
the procedures and functions of the Dos unit use standard Pascal­
style strings and the WinDos procedures and functions use null­
terminated strings. A standard Pascal-style string is a length byte 
followed by a sequence of characters. A null-terminated string is a 
sequence of non-null characters followed by a NULL (#0) 
character. 

Most of the time, you'll probably want to use the Dos unit for the 
programs you write, as most Pascal programs traditionally use 
the Pascal-style strings. If you also develop applications for the 
Windows environment, however, you'll be able to write code you 
can more easily share between the DOS and Windows platforms 
if you use the WinDos unit along with the Strings unit; Windows 
requires the use of null-terminated strings. 

You also might want to use the WinDos and Strings units if you 
have a C data file you want to use or convert. The C language 
uses null-terminated strings. 
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This chapter discusses the Dos unit first. To read about the 
WinDos unit, turn to page 163. 

Dos unit procedures and functions 
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Table 15.1 
Dos unit date and time 

procedures 

Table 15.2 
Dos unit interrupt support 

procedures 

These are the procedures and functions in the Dos unit. To use 
them, you must refer to the Dos unit with the uses statement in 
your program. 

Procedure 

GetDate 

GetFTime 

GetTime 

PackTime 

SetDate 

SetFTime 

SetTime 

UnpackTime 

Procedure 

GetIntVec 

Jntr 

MsDos 

SetIntVec 

Description 

Returns the current date set in the operating 
system. 

Returns the date and time a file was last 
modified. 

Returns the current time set in the operating 
system. 

Converts a DateTime record into a 4-byte, packed 
date-and-time Longint used by SetFTime. 

Sets the current date in the operating system. 

Sets the date and time a file was last modified. 

Sets the current time in the operating system. 

Converts a 4-byte, packed date-and-time Longint 
returned by GetFTime, FindFirst, or FindNext into 
an unpacked DateTime record. 

Description 

Returns the address stored in a specified 
interrupt vector. 

Executes a specified software interrupt with a 
specified Registers package. 

Executes a DOS function call with a specified 
Registers package. 

Sets a specified interrupt vector to a specified 
address. 
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Table 15.3 
Dos unit disk status functions 

Table 15.4 
Dos unit file-handling 

procedures and functions 

Table 15.5 
Dos unit environment­

handling functions 

Table 15.6 
Dos unit process-handling 

procedures 

Function 

DiskFree 

Disksize 

Procedure 
or function 

FExpand 

Fsearch 

Fsplit 

FindFirst 

FindNext 

GetFAttr 

setFAttr 

Function 

EnvCount 

Envstr 

GetEnv 

Procedure 

Exec 

Keep 

Swap Vectors 

Chapter 75, Interfacing with DOS 

Description 

Returns the number of free bytes of a specified 
disk drive. 

Returns the total size in bytes of a specified disk 
drive. 

Description 

Takes a file name and returns a fully qualified file 
name (drive, directory, name, and extension). 

Searches for a file in a list of directories. 

Splits a file name into its three component parts 
(drive and directory, file name, and extension). 

Searches the specified directory for the first entry 
matching the specified file name and set of 
attributes. 

Returns the next entry that matches the name 
and attributes specified in a previous call to 
FindFirst. 

Returns the attributes of a file. 

Sets the attributes of a file. 

Description 

Returns the number of strings contained in the 
DOS environment. 

Returns a specified environment string. 

Returns the value of a specified environment 
variable. 

Description 

Executes a specified program with a specified 
command line. 

Keep (or Terminate Stay Resident) terminates the 
program and makes it stay in memory. 

Swaps all saved interrupt vectors with the 
current vectors. 
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Table 15.7 
Dos unit miscellaneous 

procedures and functions 

Procedure 
or function 

Dos Version 

GetCBreak 

Get Verify 

setCBreak 

Set Verify 

Description 

Returns the DOS version number. 

Returns the state of etr/tBreak checking in DOS. 

Returns the state of the verify flag in DOS. 

Sets the state of etr/-Break checking in DOS. 

Sets the state of the verify flag in DOS. 

Dos unit constants, types, and variables 
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Constants 

Table 15.8 
Dos unit constants 

Each of the constants, types, and variables defined by the Dos unit 
are briefly discussed in this section. For more information, look 
them up in Chapter I, "Library reference," in the Programmer's 
Reference. 

The Dos unit defines several constants. These constants can be 
grouped by their function. To learn more about these constants, 
look them up as part of the group they belong to. For example, to 
find the value of FParity, look up "Flag constants" in the 
Programmer's Reference. 

Constant group 

Flag 

fmXXXX 

File attribute 

Description 

Used to test individual flag bits in the Flags 
register after a call to Intr or MsDos: FCarry, 
FParity, FAuxiliary, FZero, Fsign, FOverfLow 

Defines the allowable values for Mode field of a 
TextRec text file record:fmClosed,fmlnput, 
fmOutput, fmlnOut 

Used to construct file attributes for use with 
FindFirst, GetFAttr, and setFAttr: ReadOnly, 
Hidden, sysFile, VolumeID, Directory, Archive, 
AnyFile 
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Types 

Table 15.9 
Dos unit types 

The Dos unit defines these types: 

Types 

File record types 

Registers 

DateTime 

SearchRec 

File-handling 
string types 

Description 

FileRec defines the internal data format for both 
typed and untyped files; TextRec is the internal 
format of a variable of type Text. 

Variables of this type are used by Intr and MsDos 
to specify the input register contents and 
examine the output register contents of a 
software interrupt. 

Variables of this type are used to examine and 
construct 4-byte, packed date-and-time values for 
GetFTime, SetFTime, FindFirst, and FindNext. 

Variables of this type are used by FindFirst and 
FindNext to scan directories. 

String types used by various procedures and 
functions in the Dos unit: ComStr, PathStr, DirStr, 
NameStr, ExtStr. 

Variables DosError is used by many of the routines in the Dos unit to report 
errors. 

WinDos unit procedures and functions 

Table 15.10 
WinDos date and time 

procedures 

These are the procedures and functions in the WinDos unit. To use 
them, you must refer to the WinDos unit with the uses statement 
in your program: 

Procedure 

GetDate 

GetFTime 

Get Time 

PackTime 

SetDate 

SetFTime 

Description 

Returns the current date set in the operating system. 

Returns the date and time a file was last modified. 

Returns the current time set in the operating system. 

Converts a TDateTime record into a 4-byte, packed 
date-and-time Longint used by SetFTime. 

Sets the current date in the operating system. 

Sets the date and time a file was last modified. 
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Table 15.11 
WinDos unit interrupt support 

procedures 

Don't use these functions 
when running Windows in 

protected mode. 

Table 15.12 
WinDos unit disk status 

functions 

Table 15.13 
File-handling procedures and 

functions 
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Table 15.10: WinDos date and time procedures (continued) 

SetTime 

UnpackTime 

Procedure 

GetIntVec 

Intr 

MsDos 

SetIntVec 

Function 

DiskFree 

DiskSize 

Procedure 
or function 

FileExpand 

FileSearch 

FileSplit 

FindFirst 

FindNext 

GetFAttr 

SetFAttr 

Sets the current time in the operating system. 

Converts a 4-byte, packed date-and-time Longint 
returned by GetFTime, FindFirst, or FindNext into an 
unpacked TDateTime record. 

Description 

Returns the address stored in a specified 
interrupt vector. 

Executes a specified software interrupt with a 
specified TRegisters package. 

Executes a DOS function call with a specified 
TRegisters package. 

Sets a specified interrupt vector to a specified 
address. 

Description 

Returns the number of free bytes of a specified 
disk drive. 

Returns the total size in bytes of a specified disk 
drive. 

Description 

Takes a file name and returns a fully qualified file 
name (drive, directory, name, and extension). 

Searches for a file in a list of directories. 

Splits a file name into its three component parts 
(directory, file name, and extension). 

Searches the specified directory for the first entry 
matching the specified file name and set of 
attributes. 

Returns the next entry that matches the name 
and attributes specified in a previous call to 
FindFirst. 

Returns the attributes of a file. 

Sets the attributes of a file. 
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Table 15.14 
WinDos unit directory­

handling procedures and 
functions 

Table 15.15 
WinDos unit environment­

handling functions 

Table 15.16 
WinDos unit miscellaneous 
procedures and functions 

Procedure 
or function 

CreateDir 

GetCurDir 

RemoveDir 

SetCurDir 

Function 

GetArgCount 

GetArgStr 

GetEnvVar 

Procedure 
or function 

DosVersion 

GetCBreak 

Get Verify 

SetCBreak 

Set Verify 

Description 

Creates a new subdirectory. 

Returns the current directory of a specified drive. 

Removes a subdirectory. 

Changes the current directory. 

Description 

Returns the number of parameters passed to the 
program on the command line. 

Returns a specified command-line argument. 

Returns a pointer to the value of a specified 
environment variable. 

Description 

Returns the DOS version number. 

Returns the state of Ctrl+Break checking in DOS. 

Returns the state of the verify flag in DOS. 

Sets the state of Ctri+Break checking in DOS. 

Sets the state of the verify flag in DOS. 

WinDos unit constants/ types/ and variables 

Constants 

Each of the constants, types, and variables defined by the WinDos 
unit are briefly discussed in this section. 

The WinDos unit uses several constants. These constants can be 
grouped by their function. To learn more about these constants, 
look them up as part of the constant group they belong to. For 
example, to find the value of fParity, look up "Flag constants" in 
the Programmer's Reference. 
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Table 15.17 
WinDos constants 

Types 

Table 15.18 
WinDos unit types 

Variables 

Constant group 

Flag 

fmXXXX 

faXXXX 

fsXXXX 

fcXXXX 

Description 

Test individual flag bits in the Flags register after 
a call to Intr or MsDos: fCarry, jParity, fAuxiliary, 
fZero, fSign, fOverflow 

. Used by file-handling procedures when opening 
and closing disk files:fmClosed,fmlnput, 
fmOutput, fmlnOut 

Test, set, and clear file attribute bits in connection 
with the file-handling procedures: faReadOnly, 
faHidden, faSysFile, fa VolurneID, faDirectory, 
faArchive, faAnyFile 

Maximum file-name component string lengths 
used by FileSearch and FileExpand: fsPathName, 
fsDirectory, fsF ileN arne, fsExtension 

Return flags used by the FileSplit function: 
fcExtension, fcF ileN arne, fcDirectory, fc Wildcards 

The WinDos unit defines these types: 

Types Description 

File record types TFileRec is used for both typed and untyped files; 
TTextRec is the internal format of a variable of type 
text. 

TRegisters 

TDateTime 

TSearchRec 

Variables of this type are used by Intr and MsDos to 
specify the input register contents and examine the 
output register contents of a software interrupt. 

Variables of this type are used to examine and 
construct 4-byte, packed date-and-time values for 
GetFTime, SetFTime, FindFirst, and FindNext. 

Variables of this type are used by FindFirst and 
FindNext to scan directories. 

Dos Error is used by many of the routines in the WinDos unit to 
report errors. 
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Using nUll-terminated strings 

Turbo Pascal supports a class of character strings called null­
terminated strings. With Turbo Pascal's extended syntax and the 
Strings unit, your programs can use null-terminated strings by 
simply referring to the Strings unit with the uses statement in 
your program. 

What is a nUll-terminated string? 

The compiler stores a traditional Turbo Pascal string type as a 
length byte followed by a sequence of characters. The maximum 
length of a Pascal string is 255 characters, and a Pascal string 
occupies from 1 to 256 bytes of memory. 

A null-terminated string has no length byte; instead, it consists of 
a sequence of non-null characters followed by a NULL (#0) 
character. There is no inherent restriction on the length of a null­
terminated string, but the 16-bit architecture of DOS does impose 
an upper limit of 65,535 characters. 

Strings unit functions 

Turbo Pascal has no built-in routines specifically for null­
terminated string handling. Instead you'll find all such functions 
in the Strings unit. Among them are StrPCopy, which you can use 
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Table 16.1 
Strings unit functions 

to copy a Pascal string to a null-terminated string, and StrPas, 
which you can use to convert a null-terminated string to a Pascal 
string. Here's a brief description of each function: 

Function 

StrCat 

StrComp 

StrCopy 

StrECopy 

StrIComp 

StrLCat 

StrLComp 

StrLCopy 

StrEnd 

StrDispose 

StrLen 

StrLIComp 

StrLower 

StrMove 

StrNew 

StrPas 

StrPCopy 

StrPos 

Description 

Appends a source string to the end of a, destination 
string and returns a pointer to the destination string. 

Compares two strings, Sl and S2, and returns a value 
less than zero if Sl < S2, zero if Sl = S2, or greater than 
zero if Sl > S2. 

Copies a source string to a destination string and 
returns a pointer to the destination string. 

Copies a source string to a destination string and 
returns a pointer to the end of the destination string. 

Compares two strings without case sensitivity. 

Appends a source string to the end of a destination 
string, ensuring that the length of the resulting string 
doesn't exceed a given maximum, and returns a pointer 
to the destination string. 

Compares two strings for a given maximum length. 

Copies up to a given number of characters from a 
source string to a destination string and returns a 
pointer to the destination string. 

Returns a pointer to the end of a string (that is, a 
pointer to the null character that terminates a string). 

Disposes of a previously allocated string. 

Returns the length of a string. 

Compares two strings for a given maximum length 
without case sensitivity. 

Converts a string to lowercase and returns a pointer to 
the string. 

Moves a block of characters from a source string to a 
destination string, and returns a pointer to the 
destination string. The two blocks may overlap. 

Allocates a string on the heap. 

Converts a null-terminated string to a Pascal string. 

Copies a Pascal string to a null-terminated string and 
returns a pointer to the null-terminated string. 

Returns a pointer to the first occurrence of a given 
substring within a string, or nil if the substring doesn't 
occur within th~ string. 
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Table 16.1: Strings unit functions (continued) 

StrRScan Returns a pointer to the last occurrence of a given 
character within a string, or nil if the character doesn't 
occur within the string. 

StrScan 

StrUpper 

Returns a pointer to the first occurrence of a given 
character within a string, or nil if the character doesn't 
occur within the string. 

Converts a string to uppercase and returns a pointer to 
the string. 

Using null-terminated strings 

Character 
pointers and 
string literals 

Null-terminated strings are stored as arrays of characters with a 
zero-based integer index type; that is, an array of the form 

array[O .. X] of Char 

where X is a positive nonzero integer. These arrays are called 
zero-based character arrays. Here are some examples of declarations 
of zero-based character arrays that can be used to store null­
terminated strings: 

type 
Tldentifier = array[O .. 15] of Chari 
TFileName = array[O .. 79] of Chari 
TMernoText = array[O .. 1023] of Chari 

The biggest difference between using Pascal strings and null­
terminated strings is the extensive use of pointers in the 
manipulation of null-terminated strings. Turbo Pascal performs 
operations on these pointers with a set of extended syntax rules. 

When extended syntax is enabled, a string literal is assignment 
compatible with the PChar type. This means that a string literal can 
be assigned to a variable of type PChar. For example, 

var 
P: PChari 

begin 
P .- 'Hello world ... 'i 

endi 
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The effect of such an assignment is that the pointer points to an 
area of memory that contains a null-terminated copy of the string 
literal. This example accomplishes the same thing as the previous 
example: 

const 
TempString: array[O .. 14] of Char = 'Hello world ... '#O; 

var 
P: PChar; 

begin 
P := @TempString; 

end; 

You can use string literals as actual parameters in procedure and 
function calls when the corresponding formal parameter is of type 
PChar. For example, given a procedure with the declaration 

procedure PrintStr(Str: PChar); 

the following procedure calls are valid: 

PrintStr('This is a test'); 
PrintStr(#10#13); 

Just as it does with an assignment, the compiler generates a null­
terminated copy of the string literal. The compiler passes a 
pointer to that memory area in the Str parameter of the PrintStr 
procedure. 

Finally, you can initialize a typed constant of type PChar with a 
string constant. You can do this with structured types as well, 
such as arrays of PChar and records and objects with PChar fields. 

const 
Message: PChar = 'Program terminated'; 
Prompt: PChar = 'Enter values: 'i 

Digits: array[O .. 9] of PChar = ( 
'Zero', 'One', 'Two', 'Three', 'Four', 
'Five', 'Six', 'Seven', 'Eight', 'Nine'); 

A string constant expression is always evaluated as a Pascal-style 
string even if it initializes a typed constant of type PChar; 
therefore, a string constant expression is always limited to 255 
characters in length. 
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Character 
pointers and 

character arrays 

Character pointer 
indexing 

When you enable the extended syntax with $X, a zero-based 
character array is compatible with the PChar type. This means that 
whenever a PChar is expected, you can use a zero-based character 
array instead. When you use a character array in place of a PChar 
value, the compiler converts the character array to a pointer 
constant whose value corresponds to the address of the first 
element of the array. For example, 

var 
A: array[O .. 63) of Char; 
P: PChar; 

begin 
P := A; 
PrintStr(A}; 
PrintStr(P} ; 

end; 

Because of this assignment statement, P now points to the first 
element of A, so PrintStr is called twice with the same value. 

You can initialize a typed constant of a zero-based character array 
type with a string literal that is shorter than the declared length of 
the array. The remaining characters are set to NULL (#0) and the 
array effectively contains a null-terminated string. 

type 
TFileName = array[O .. 79) of Char; 

const 
FileNameBuf: TFileNarne = 'TEST.PAS'; 
FileNarnePtr: PChar = FileNarneBuf; 

Just as a zero-based character array is compatible with a character 
pointer, so can a character pointer be indexed as if it were a zero­
based character array. 

var 
A: array[O .. 63) of Char; 
P: PChar; 
Ch: Char; 
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begin 
P := A; 
Ch := A[5]; 
Ch := P[5]; 

end; 

Both of the last two statements assign Ch the value contained in 
the sixth character element of A. 

When you index a character pointer, the index specifies an . 
unsigned offset to add to the pointer before it's dereferenced. 
Therefore, PfO] is equivalent to pA and specifies the character 
pointed to by P. P[ll specifies the character right after the one 
pointed to by P, P[2] specifies the next character, and so on. For 
indexing, a PChar behaves as if it were declared as this: 

type 
TCharArray = array[0 .. 65535] of Char; 
PChar = ATCharArray; 

The compiler performs no range checks when indexing a char­
acter pointer because it has no type information available to 
determine the maximum length of the null-terminated string 
pointed to by the character pointer. Your program must perform 
any such range checking. 

The StrUpper function shown here illustrates the use of character 
pointer indexing to convert a null-terminated string to uppercase. 

function StrUpper(Str: PChar): PChar; 
var 

I: Word; 
begin 

I : = 0; 
while Str[I] <> #0 do 
begin 

Str [I] : = UpCase (Str[I] ) ; 
Inc (I); 

end; 
StrUpper := Str; 

end; 

Notice that StrUpper is a function, not a procedure, and that it 
always returns the value that it was passed as a parameter. 
Because the extended syntax allows the result of a function call to 
be ignored, StrUpper can be treated as if it were a procedure: 

StrUpper (A) ; 
PrintStr (A) ; 
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However, as StrUpper always returns the value it was passed, the 
preceding statements can be combined into one: 

PrintStr(StrUpper(A)); 

Nesting calls to null-terminated string-handling functions can be 
very convenient when you want to indicate a certain interrelation­
ship between a set of sequential string manipulations. 

~ For information about PChar operations, see page 71. 

Null-terminated 
strings and 

standard 
procedures 

An example using 
string-handling 

functions 

Turbo Pascal's extended syntax allows the Read, Readln, Str, and 
Val standard procedures to be applied to zero-based character 
arrays, and allows the Write, Writeln, Val, Assign, and Rename 
standard procedures to be applied to both zero-based character 
arrays and character pointers. For more details, see the descrip­
tions of these standard procedures in the Programmer's Reference. 

Here's a code example that shows how we used some of the 
string-handling functions when we wrote the FileSplit function in 
the WinDos unit: 

{ Maximum file name component string lengths 

const 
fSPathName = 79; 
fsDirectory = 67; 
fsFileName = 8; 
fsExtension = 4; 

FileSplit return flags 

const 
fcExtension = $0001; 
fcFileName = $0002; 
fcDirectory = $0004; 
fcWildcards = $0008; 

FileSplit splits the file name specified by Path into its 
three components. Dir is set to the drive and directory path 

{ with any leading and trailing backslashes, Name is set to the 
{ file name, and Ext is set to the extension with a preceding 
{ period. If a component string parameter is NIL, the 
{ corresponding part of the path is not stored. If the path 
{ does not contain a given component, the returned component 
{ string is empty. The maximum lengths of the strings returned 
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in Dir, Name, and Ext are defined by the fsDirectory, 
fsFileName, and fsExtension constants. The returned value is 
a combination of the fcDirectory, fcFileName, and fcExtension 
bit masks, indicating which components were present in the 
path. If the name or extension contains any wildcard 
characters (* or ?), the fcWildcards flag is set in the 
returned value. 

function FileSplit(Path, Dir, Name, Ext: PChar): Word; 
var 

DirLen, NameLen, Flags: Word; 
NamePtr, ExtPtr: PChar; 

begin 
NamePtr := StrRScan(Path, '\'); 
if NamePtr = nil then NamePtr := StrRScan(Path, ': '); 
if NamePtr = nil then NamePtr := Path else Inc (NamePtr) ; 
ExtPtr := StrScan(NamePtr, , .'); 
if ExtPtr = nil then ExtPtr := StrEnd(NamePtr); 
DirLen := NamePtr - Path; 
if DirLen > fsDirectory then DirLen := fsDirectory; 
NameLen := ExtPtr - NamePtr; 
if NameLen > fSFilenarne then NameLen .- fsFilename; 
Flags := 0; 
if (StrScan(NamePtr, '?') <> nil) or 

(StrScan(NamePtr, '*') <> nil) then 
Flags := fcWildcards; 

if DirLen <> 0 then Flags := Flags or fcDirectory; 
if NameLen <> 0 then Flags := Flags or fcFilename; 
if ExtPtr[O] <> #0 then Flags := Flags or fcExtension; 
if Dir <> nil then StrLCopy(Dir, Path, DirLen); 
if Name <> nil then StrLCopy(Name, NamePtr, NameLen); 
if Ext <> nil then StrLCopy(Ext, ExtPtr, fsExtension); 
FileSplit .- Flags; 

end; 
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c H A p T E R 

17 

Using the Borland Graphics Interface 

Your license agreement 
permits you to distribute the 

.CHR and .BGI files along with 
your programs. 

Drivers 

The Graph unit features a complete library of more than 50 
graphics routines that range from high-level calls such as 
Set ViewPort, Circle, Bar3D, and DrawPoly, to bit-oriented routines 
such as GetImage and PutImage. It supports several fill and line 
styles and there are several fonts that may be magnified, justified, 
and oriented horizontally or vertically. 

To compile a program that uses the Graph unit, you'll need your 
program's source code, the compiler~ and access to the standard 
units in the run-time library (TURBO.TPL) and the Graph unit 
(GRAPH.TPU): 

To run a program that uses the Graph unit, you'll need one or 
more of the graphics drivers (.BGI files listed in the next section) 
in addition to your .EXE program. Also, if your program uses any 
stroked fonts, you'll need one or more font (.CHR) files as well. 

Graphics drivers are provided for the following graphics adapters 
(and true compatibles): 

.CGA 
• MCGA 
• EGA 
.VGA 

• Hercules 
• AT&T 400 line 
.3270 PC 
• IBM 8514 
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BGI drivers 

IBM 8514 support 
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Each driver contains code and data and is stored in a separate file 
on disk. At run time, the InitGraph procedure identifies the 
graphics hardware, loads and initializes the appropriate graphics 
driver, puts the system into graphics mode, and then returns 
control to the calling routine. The CloseGraph procedure unloads 
the driver from memory and restores the previous video mode. 
You can switch back and forth between text and graphics modes 
using the RestoreCrtMode and SetGraphMode routines. To load the 
driver files yourself or link them into your .EXE file, refer to 
RegisterBGldriver in Chapter I, "Library reference," in the 
Programmer's Reference. 

Graph supports computers with dual monitors. When Graph is 
initialized by calling InitGraph, the correct monitor will be selected 
for the graphics driver and mode requested. When terminating a 
graphics program, the previous video mode will be restored. If 
auto detection of graphics hardware is requested on a dual moni­
tor system, InitGraph will select the monitor and graphics card 
that will produce the highest quality graphics output. 

Driver 

ATT.BGI 
CGA.BGI 
EGAVGA.BGI 
HERC.BGI 
IBM8514.BGI 
PC3270.BGI 

Equipment 

AT&T 6300 (400 line) 
IBM CGA, MeGA 
IBM EGA, VGA 
Hercules monochrome 
IBM 8514 
IBM 3270 PC 

Turbo Pascal supports the IBM 8514 graphics card, a high­
resolution graphics card capable of resolutions up to 1024 x 768 
pixels and a color palette of 256 colors from a list of 256K colors .. 
The driver file name is IBM8514.BGI. 

Turbo Pascal can't properly autodetect the IBM 8514 graphics 
card (the autodetection logic recognizes it as VGA). Therefore, to 
use the IBM 8514 card, the GraphDriver variable must be assigned 
the value IBM8514 (which is defined in the Graph unit) when 
InitGraph is called. You should not use DetectGraph (or Detect with 
InitGraph) with the IBM 8514 unless you want the emulated VGA 
mode. 

The supported modes of the IBM 8514 card are IBM8514LO 
(640 x 480 pixels), and IBM8514HI (1024 x 768 pixels). Both mode 
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Coordinate 
system 

Figure 17.1 
Screen with xv-coordinates 

constants are defined in the interface for GRAPH. TPU or 
GRAPH.TPP. 

The IBM 8514 uses three 6-bit values to define colors. There is a 
6-bit Red, Green, and Blue component for each defined color. The 
SetRGBPalette procedure allows you to define colors for the IBM 
8514; it's defined in the Graph unit as: 

procedure SetRGBPalette(ColorNum, Red, Green, Blue: Word); 

The argument ColorNum defines the palette entry to be loaded. 
ColorNum is an integer from 0 to 255 (decimal). The arguments 
Red, Green, and Blue define the component colors of the palette 
entry. Only the lower byte of these values is used, and out of this 
byte, only the 6 most-significant bits are loaded in the palette. 

The other palette manipulation routines of the graphics library 
can't be used with the IBM 8514 driver (that is, SetAllPalette, 
SetPalette, and GetPalette). 

For compatibility with the balance of the IBM graphics adapters, 
the BGI driver defines the first 16 palette entries of the IBM 8514 
to the default colors of the EGAjVGA. These values can be used 
as is, or changed using the SetRGBPalette routine. 

By convention, the upper left corner of the graphics screen is (0,0). 
The x values, or columns, increment to the right. The y values, or 
rows, increment downward. In 320x200 mode on a eGA, the 
screen coordinates for each of the four corners with a specified 
point in the middle of the screen would look like this: 

(0,0) (319,0) 
~----------------~ 

.(159,99) 

(0,199) (319,199) 
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Current pointer 

Text 
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Many graphics systems support the notion of a current pointer 
(CP). The CP is similar in concept to a text mode cursor except 
that the CP isn't visible. 

In text mode, this Write statement 

wri te ( , ABC' ) ; 

leaves the cursor in the column immediately following the letter 
C. If the C is written in column 80, then the cursor wraps around 
to column 1 of the next line. If the C is written in column 80 on the 
25th line, the entire screen scrolls up one line, and the cursor is in 
column 1 of line 25. 

MoveTo(O,O) 
LineTo(20,20) 

In graphics mode, the preceding LineTo statement leaves the CP at 
the last point referenced (20,20). The actual line output is clipped 
to the current viewport if clipping is active. Note that the CP is 
never clipped. 

The MoveTo command is the equivalent of GoToXY. Its only 
purpose is to move the CPo Only the commands that use the CP 
move the CP: InitGraph, MoveTo, MoveRel, LineTo, LineRel, OutText, 
SetGraphMode, GraphDefaults, ClearDevice, Set ViewPort, and 
Clear ViewPort. The latter five commands move the CP to (0,0). 

An 8x8 bitmapped font and several stroked fonts are included for 
text output while in graphics mode. A bitmapped character is 
defined by an 8x8 matrix of pixels. A stroked font is defined by a 
series of vectors that tell the graphics system how to draw the 
font. 

The advantage of using a stroked font is apparent when you start 
to draw large characters. Because a stroked font is defined by 
vectors, it retains good resolution and quality when the font is 
enlarged. 

When a bitmapped font is enlarged, the matrix is multiplied 
by a scaling factor and, as the scaling factor becomes larger, the 
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characters' resolution becomes coarser. For small characters, the 
bitmapped font is usually sufficient, but for larger text you will 
want to select a stroked font. 

The justification of graphics text is controlled by the setTextJustify 
procedure. Scaling and font selection is done with the setTextstyle 
procedure. Graphics text is output by calling either the OutText or 
OutTextXY procedures. Inquiries about the current text settings 
are made by calling the GetTextsettings procedure. The size of 
stroked fonts can be customized by the setUserCharsize 
procedure. 

Each stroked font is kept in its own file on disk with a .CHR file 
extension. Font files can be loaded from disk automatically by the 
Graph unit at run time (as described), or they can be linked in or 
loaded by the user program and "registered" with the Graph unit. 

Turbo Pascal provides a special utility, BINOBJ.EXE, that converts 
a font file (or any binary data file, for that matter) to an .OBJ file 
that can be linked into a unit or program using the {$L} compiler 
directive. This makes it possible for a program to have all its font 
files built into the .EXE file. (Read the comments at the beginning 
of the BGILINK.PAS sample program.) 

Figures and styles 

Viewports and bit 

All kinds of support routines are provided for drawing and filling 
figures, including points, lines, circles, arcs, ellipses, rectangles, 
polygons, bars, 3-D bars, and pie slices. Use setLinestyle to control 
whether lines are thick or thin, or whether they are solid, dotted, 
or built using your own pattern. 

Use setFillstyle and setFillPattern, FillPoly and FloodFill to fill a 
region or a polygon with cross-hatching or other intricate 
patterns. 

images The Set ViewPort procedure makes all output commands operate 
in a rectangular region onscreen. Plots, lines, figures-all graphics 
output-are viewport-relative until the viewport is changed. 
Other routines are provided to clear a viewport and read the 
current viewport definitions. If clipping is active, all graphics 
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output is clipped to the current port. Note that the CP is never 
clipped. 

GetPixel and PutPixel are provided for reading and plotting pixels. 
GetImage and PutImage can be used to save and restore rectan­
gular regions onscreen. They support the full complement of 
BitBIt operations (copy, xor, or, and, not). 

Paging and colors 

Error handling 

180 

There are many other routines that support palettes, colors, 
multiple graphic pages (EGA, VGA, and Hercules only), and 
soon. 

Internal errors in the Graph unit are returned by the function 
GraphResuIt. GraphResuIt returns an error code that reports the 
status of the last graphics operation. Find the error return codes 
under GraphResult Errors in Chapter I, "Library reference," in 
the Programmer's Reference. 

The following routines set GraphResuIt: 

Bar 
Bar3D 
ClearViewPort 
CloseGraph 
DetectGraph 
DrawPoly 
FillPoly 
FloodFill 
GetGraphMode 

ImageSize 
InitGraph 
Install User Driver 
InstallUserFont 
PieS lice 
Regis terB Gldriver 
RegisterBGIfont 
SetAllPalette 

SetF illPattern 
SetF illS tyle 
SetGraphBufSize 
SetGraphMode 
SetLineStyle 
SetPalette 
SetTextJustify 
SetTextStyle 

GraphResuIt is reset to zero after it has been called. Therefore, the 
user should store the value of GraphResuIt into a temporary 
variable and then test it. 
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Getting started 

Here's a simple graphics program: 

program GrafTest; 
uses 

Graph; 
const 

S = 'Borland Graphics Interface (BGI) '; 
var 

GraphDriver: Integer; 
GraphMode: Integer; 
ErrorCode: Integer; 
Size: Word; 

begin 
GraphDriver := Detect; { Set flag: do detection} 
InitGraph(GraphDriver, GraphMode, 'C:\TP\BGI'); 
ErrorCode := GraphResult; 
if ErrorCode <> GrOk then 

begin 
Error? } 

Writeln('Graphics error: ' GraphErrorMsg(ErrorCode)); 
Writeln('Program aborted ... '); 
Halt (1); 

end; 
Rectangle (0, 0, GetMaxX, GetMaxY); 
SetTextJustify(CenterText, CenterText); 
Size := 3; 
repeat 

SetTextStyle(DefaultFont, HorizDir, Size); 
Dec(Size); 

until (Size = 0) or (TextWidth(S) < GetMaxX); 
if Size <> 0 then 

OutTextXY(GetMaxX div 2, GetMaxY div 2, S); 
Readln; 
CloseGraph; 

end. { GrafTest 

Draw full sceen box } 
{ Center text } 

Center of screen } 

The program begins with a call to In it Graph, which autodetects 
the hardware and loads the appropriate graphics driver. For the 
program to run correctly, the driver and fonts must be in the same 
directory as the executable program, or the program must specify 
an explicit directory. In this example, the directory is C:\ TP\BGI. 
If the program fails to recognize graphics hardware or an error 
occurs during initialization, the program displays an error 
message and terminates. Otherwise, the program draws a box 
along the edge of the screen and displays text in the center of the 
screen. 
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~ Neither the AT&T 400 line card nor the IBM 8514 graphics 
adapter is autodetected. You can still use these drivers by over­
riding autodetection and passing InitGraph the driver code and a 
valid graphics mode. To use the AT&T driver, for example, 
replace the ninth and tenth lines in the preceding example with 
the following three lines of code: -

GraphDriver := ATT400; 
GraphMode := ATT400Hi; 
InitGraph(GraphDriver, GraphMode, 'C:\TP\BGI'); 

This instructs the graphics system to load the AT&T 400 line 
driver located in C: \ TP\BGI and set the graphics mode to 640 by 
400. 

Here's another example that demonstrates how to switch back 
and forth between graphics and text modes: 

program GrafTst2; 
uses 

Graph; 
var 

GraphDriver: Integer; 
GraphMode: Integer; 
ErrorCode: Integer; 

begin 
GraphDriver := Detect; { Set flag: do detection} 
InitGraph(GraphDriver, GraphMode, 'C:\TP\BGI'); 
ErrorCode := GraphResult; 
if ErrorCode <> grOk then 
begin 

Writeln('Graphics error: " GraphErrorMsg(ErrorCode)); 
Writeln('Program aborted ... '); 
Halt (1) ; 

end; 
OutText('In Graphics mode. Press <RETURN>'); 
Readln; 
RestoreCRTMode; 
Write('Now in text mode. Press <RETURN>'); 
Readln; 
SetGraphMode(GraphMode) ; 
OutText('Back in Graphics mode. Press <RETURN>'); 
Readln; 
CloseGraph; 

end. { GrafTst2 

{ Error? } 
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Heap 
management 

routines 

Note that the SetGraphMode call near the end of the example resets 
all the.graphics parameters (palette, current pointer, foreground, 
and background colors, and so on) to the default values. 

The call to Close Graph restores the video mode that was detected 
initially by InitGraph and frees the heap memory that was used to 
hold the graphics driver. 

Two heap management routines are used by the Graph unit: 
GraphGetMem and GraphFreeMem. GraphGetMem allocates 
memory for graphics device drivers, stroked fonts, and a scan 
buffer. GraphFreeMem de allocates the memory allocated to the 
drivers. The standard routines take the following form: 

procedure GraphGetMem(var P: Pointer; Size: Word); 
{ Allocate memory for graphics } 

procedure GraphFreeMem(var P: Pointer; Size: Word); 
{ Deallocate memory for graphics } 

Two pointers are defined by Graph that, by default, point to the 
two standard routines described here. The pointers are defined as 
follows: 

var 
GraphGetMemPtr: Pointer; 
GraphFreeMemPtr: Pointer 

{ Pointer to memory allocation routine } 
Pointer to memory deal location routine } 

The Graph unit calls the heap management routines referenced by 
GraphGetMemPtr and GraphFreeMemPtr to allocate and deallocate 
memory for three different purposes: 

• A multi-purpose graphics buffer whose size can be set by a call 
to SetGraphBujSize (default equals 4K) 

• A device driver that is loaded by InitGraph (*.BGI files) 

• A stroked font file that is loaded by SetTextStyle (*.CHR files) 

The graphics buffer is always allocated on the heap. The device 
driver is allocated on the heap unless your program loads or links 
one in and calls RegisterBGldriver. The font file is allocated on the 
heap when you select a stroked font using SetTextStyle-unless 
your program loads or links one in and calls RegisterBGIfont. 

When the Graph unit is initialized, these pointers point to the 
standard graphics allocation and deallocation routines that are 
defined in the implementation section of the Graph unit. You can 
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insert your own memory-management routines by assigning 
these pointers the address of your routines. The user-defined 
routines must have the same parameter lists as the standard 
routines and must be far procedures. The following is an example 
of user-defined allocation and deallocation routines; notice the 
use of MyExitProc to automatically call Close Graph when the 
program terminates: 

program UserHeapManagement; 
{ Illustrates how the user can steal the heap 
{ management routines used by the Graph unit. 

uses 
Graph; 

var 
GraphDriver, GraphMode: Integer; 
ErrorCode: Integer; 
PreGraphExitProc: Pointer; 

{ Stores GraphResult return code 
{ Saves original exit proc 

procedure MyGetMem(var P: Pointer; Size: Word); far; 
{ Allocate memory for graphics device drivers, fonts, and scan buffer} 
begin 

GetMem(P, Size) 
end; { MyGetMem } 

procedure MyFreeMem(var P: Pointer; Size: Word); far; 
{ Deallocate memory for graphics device drivers, fonts, and scan 

buffer} 
begin 

if P <> nil then 
begin 

FreeMem(P, Size); 
P := nil; 

end; 
end; { MyFreeMem 

procedure MyExitProc; far; 

{ Don't free nil pointers! } 

{ Always gets called when program terminates 
begin 

ExitProc := PreGraphExitProc; 
CloseGraph; 

end; { MyExitProc } 

begin 
PreGraphExitProc := ExitProc; 
ExitProc := @MyExitProc; 

GraphGetMemPtr :=.@MyGetMem; 
GraphFreeMemPtr := @MyFreeMem; 

Restore original exit proc 
{ Do heap clean up 

Install clean-up routine 

{ Control memory allocation 
Control memory deallocation 
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GraphDriver := Detect; 
InitGraph(GraphDriver, GraphMode, "); 
ErrorCode := GraphResult; 
if ErrorCode <> grOk then 
begin 

Writeln('Graphics error: ' GraphErrorMsg(ErrorCode))i 
Readlni 
Halt (1); 

end; 
Line(O, 0, GetMaxX, GetMaxY); 
OutTextXY(1, 1, 'Press <Return>:'); 
Readlni 

end. {UserHeapManagement} 

Graph procedures and functions 

The Graph unit provides many procedures and functions for use 
in your programs: 

Table 17.2: Graph unit procedures and functions 

Arc 

Bar 

Bar3D 

Circle 

ClearDevice 

Clear ViewPort 

CloseGraph 

DetectGraph 

DrawPoly 

Ellipse 

FillEllipse 

FillPoly 

FloodFill 

GetArcCoords 

GetAspectRatio 

GetBkColor 

GetColor 

Draws a circular arc from start angle to end angle using (x,y) as the center point. 

Draws a bar using the current fill style and color. 

Draws a 3-D bar using the current fill style and color. 

Draws a circle using (x,y) as the center point. 

Clears the currently selected output device and homes the current pointer. 

Clears the current viewport. 

Shuts down the graphics system. 

Checks the hardware and determines which graphics driver and mode to use. 

Draws the outline of a polygon using the current line style and color. 

Draws an elliptical arc from start angle to end angle, using (x,y) as the center 
point. 

Draws a filled ellipse using (x,y) as a center point and XRadius and YRadius as the 
horizontal and vertical axes. 

Fills a polygon, using the scan converter. 

. Fills a bounded region using the current fill pattern and fill color. 

Allows the user to inquire about the coordinates of the last Arc command. 

Returns the effective resolution of the graphics screen from which the aspect 
ratio (Xasp:Yasp) can be computed. 

Returns the current background color. 

Returns the current drawing color. 
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Table 17.2: Graph unit procedures and functions (continued) 

GetDefauItPalette Returns the default hardware palette in a record of PaletteType. 

GetDriverName 

GetFillPattern 

GetFillSettings 

GetGraphMode 

GetImage 

GetLineSettings 

GetMaxColor 

GetMaxMode 

GetMaxX 

GetMaxY 

GetModeName 

GetModeRange 

GetPaletteSize 

GetPixel 

GetPalette 

GetTextSettings 

GetViewSettings 

GetX 

GetY 

GraphDefaults 

GraphErrorMsg 

GraphResuIt 

ImageSize 

InstallUserDriver 

InstallUserFont 

InitGraph 

Line 

LineRel 

LineTo 
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Returns a string containing the name of the current driver. 

Returns the last fill pattern set by a call to SetFillPattern. 

Allows the user to inquire about the current fill pattern and color as set by 
SetFillStyle or SetFillPattern. 

Returns the current graphics mode. 

Saves a bit image of the specified region into a buffer. 

Returns the current line style, line pattern, and line thickness as set by 
SetLineStyle. 

Returns the highest color that can be passed to SetColor. 

Returns the maximum mode number for the currently loaded driver. 

Returns the rightmost column (x resolution) of the current graphics driver and 
mode. 

Returns the bottommost row (y resolution) of the current graphics driver and 
mode. 

Returns a string containing the name of the specified graphics mode. 

Returns the lowest and highest valid graphics mode for a given driver. 

Returns the size of the palette color lookup table. 

Gets the pixel value at (x,y). 

Returns the current palette and its size. 

Returns the current text font, direction, size, and justification as set by 
SetTextStyle and SetTextJustify. 

Allows the user to inquire about the current viewport and clipping parameters. 

Returns the x-coordinate of the current position (CP). 

Returns the y-coordinate of the current position (CP). 

Homes the current pointer (CP) and resets the graphics system. 

Returns an error message string for the specified ErrorCode. 

Returns an error code for the last graphics operation. 

Returns the number of bytes required to store a rectangular region of the screen. 

Installs a vendor-added device driver to the BGI device driver table. 

Installs a new font file that isn't built into the BGI system. 

Initializes the graphics system and puts the hardware into graphics mode. 

Draws a line from the (xl, yl) to (x2, y2). 

Draws a line to a point that is a relative distance from the current pointer (CP). 

Draws a line from the current pointer to (x,y). 
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Table 17.2: Graph unit procedures and functions (continued) 

MoveRel Moves the current pointer (CP) a relative distance from its current position. 

MoveTo Moves the current graphics pointer (CP) to (x,y). 

OutText Sends a string to the output device at the current pointer. 

Sends a string to the output device. OutTextXY 

PieS lice Draws and fills a pie slice, using (x,y) as the center point and drawing from start 
angle to end angle. 

PutImage 

PutPixei 

Rectangle 

RegisterBGldriver 

RegisterBGIfont 

RestoreCrtMode 

Sector 

SetActivePage 

SetAllPalette 

SetAspectRatio 

SetBkCoior 

SetColor 

SetFillPattern 

SetFillStyle 

SetGraphBujSize 

SetGraphMode 

SetLineStyle 

SetPalette 

SetRGBPalette 

SetTextJustify 

SetTextStyle 

SetUserCharSize 

SetViewPort 

SetVisualPage 

SetWriteMode 

TextHeight 

Text Width 

Puts a bit image onto the screen. 

Plots a pixel at (x,y). 

Draws a rectangle using the current line style and color. 

Registers a valid BGI driver with the graphics system. 

Registers a valid BGI font with the graphics system. 

Restores the original screen mode before graphics is initialized. 

Draws and fills an elliptical sector. 

Sets the active page for graphics output. 

Changes all palette colors as specified. 

Changes the default aspect ratio. 

Sets the current background color using the palette. 

Sets the current drawing color using the palette. 

Selects a user-defined fill pattern. 

Sets the fill pattern and color. 

Lets you change the size of the buffer used for scan and flood fills. 

Sets the system to graphics mode and clears the screen. 

Sets the current line width and style. 

Changes one palette color as specified by ColorNum and Color. 

Lets you modify palette entries for the IBM 8514 and the VGA drivers. 

Sets text justification values used by OutText and OutTextXY. 

Sets the current text font, style, and character magnification factor. 

Lets you change the character width and height for stroked fonts. 

Sets the current output viewport or window for graphics output. 

Sets the visual graphics page number. 

Sets the writing mode (copy or xor) for lines drawn by DrawPoly, Line, LineRel, 
Line To, and Rectangle. 

Returns the height of a string in pixels. 

Returns the width of a string in pixels. 
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For a detailed description of each procedure or function, refer to 
Chapter I, "Library reference," in the Programmer's Reference. 

Graph unit constants, types, and variables 

Constants 

Table 17.3 
Graph unit constant groups 

The Graph unit defines several constants, types, and variables that 
your programs can use. 

The Graph constants can be grouped by their function. To learn 
more about these constants, see Chapter I, "Library reference," in 
the Programmer's Reference. Look up the constant under the group 
it belongs to. This table will help you identify the group you 
want: 

Constant group Description 

Driver and mode Constants that specify video drivers and 
modes; used with InitGraph, DetectGraph, 
and GetModeRange. 

grXXXX Constants that identify the type of error 
returned from GraphResult. 

Color Constants that specify colors; used with 
setPalette and setAllPalette. 

Color for setRGBPalette Constants used with setRGBPalette to select 
standard EGA colors on an IBM 8514. 

Line style Constants used to determine a line style 
and thickness; used with GetLinesettings 
and setLinestyle. 

Font control Constants that identify fonts; used with 
GetTextsettings and setTextstyle. 

Justification Constants that control horizontal and 
vertical justification; used with 
setTextJustify. 

Clipping Constants that control clipping; used with 
Set ViewPort. 

Bar Constants that control the drawing of a 3-D 
top on a bar; used with Bar3D. 

Fill pattern Constants that determine the pattern used 
to fill an area; used with GetFillsettings and 
setFillstyle. 
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Types 

Table 17.4 J 

Graph unit types 

Variables 

Table 17.3: Graph unit constant groups (continued) 

BitBlt operators 

MaxColors 

Operators (copy, xor, or, and, and not) used 
with PutImage and, SetWriteMode. 

The constant that defines the maximum 
number of colors used with GetPalette, 
GetDefaultPalette, and SetAIIPalette. 

For example, to find the constant you need to change the 
background screen color to green, look under Color Constants in 
Chapter I, "Library reference," in the Programmer's Reference. 

The Graph unit defines these types: 

Type 

PaletteType 

LineSettingsType 

TextSettingsType 

FillSettingsType 

FillPa ttern Type 

PointType 

ViewPort Type 

ArcCoordsType 

Description 

The record that defines the size.and colors 
of the palette; used by GetPalette, 
GetDefaultPalette, and SetAIIPalette. 

The record that defines the style, pattern, 
and thickness of a line; used by 
GetLineSettings. 

The record that defines the text; used by 
GetTextSettings. 

The record that defines the pattern and 
color used to fill an area; used by 
GetFillSettings. 

The record that defines a user-defined fill 
pattern; used by GetFillPattern and 
SetFillPattern. 

A type defined for your convenience. 

A record that reports the status of the 
current viewport; used by GetViewSettings. 

A record that retrieves information about 
the last call to Arc or Ellipse; used by 
GetArcCoords. 

The Graph unit has two variables you can use: GraphGetMemPtr 
and GraphFreeMemPtr. They are used by heap-management 
routines. Read about them in Chapter I, "Library reference," in 
the Programmer's Reference. 
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Using overlays 

Overlays are parts of a program that share a common memory 
area. Only the parts of the program that are required for a given 
function reside in memory at the same time; they can overwrite 
each other during execution. 

Overlays can significantly reduce a program's total run-time 
memory requirements. In fact, with overlays you can execute pro­
grams that are much larger than the total available memory 
because only parts of the program reside in memory at any given 
time. 

Turbo Pascal manages overlays at the unit level; this is the 
smallest part of a program that can be made into an overlay. 
When an overlaid program is compiled, Turbo Pascal generates 
an overlay file (extension .OVR) in addition to the executable file 
(extension .EXE). The .EXE file contains the static (nonoverlaid) 
parts of the program, and the .OVR file contains all the overlaid 
units that will be swapped in and out of memory during program 
execution. 

Except for a few programming rules, an overlaid unit is identical 
to a nonoverlaid unit. In fact, as long as you observe these rules, 
you don't even need to recompile a unit to make it into an over­
lay. The decision of whether or not a to overlay a unit is made by 
the program that uses the unit. 

When an overlay is loaded into memory, it's placed in the overlay 
buffer, which resides in memory between the stack segment and 
the heap. By default, the size of the overlay buffer is as small as 
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possible, but it can be easily increased at run time by allocating 
additional space from the heap. Like the data segment and the 
minimum heap size, the default overlay buffer size is allocated 
when the .EXE is loaded. If enough memory isn't -available, an 
error message will be displayed by DOS ("Program too big to fit 
in memory") or by the. IDE ("Not enough memory to run pro­
gram"). 

One very important option of the overlay manager is the ability to 
load the overlay file into expanded memory when sufficient space 
is available. Turbo Pascal supports version 3.2 or later of the 
Lotus/Intel/Microsoft Expanded Memory Specification (EMS) for 
this purpose. Once placed into EMS, the overlay file is closed, and 
subsequent overlay loads are reduced to fast in-memory transfers. 

The overlay manager 

192 

Turbo Pascal's overlay manager is implemented by the Overlay 
standard unit. The buffer-management techniques used by the 
Overlay unit are very advanced, and always guarantee optimal 
performance in the available memory. For example, the overlay 
manager always keeps as many overlays as possible in the over­
lay buffer to reduce the chance of having to read an overlay from 
disk. Once an overlay is loaded, a call to one of its routines exe­
cutes just as fast as a call to a nonoverlaid routine. Also, when the 
overlay manager needs to dispose of an overlay to make room for 
another, it attempts to first dispose of overlays that are inactive 
(ones that have no active routines at that time). 

To implement its advanced overlay-management techniques, 
Turbo Pascal requires that you observe two important rules when 
writing overlaid programs: 

• All overlaid units must include a {$O+} directive, which causes 
the compiler to ensure that the generated code can be overlaid . 

• Whenever a call is made to an overlaid procedure or function, 
you must ensure that all currently active procedures and 
functions use the far call model. 

Both rules are explained further in a section entitled "Designing 
overlaid programs," beginning on page 197. For now, just note 
that you can easily satisfy these requirements by placing a 
{$O+,F+} compiler directive at the beginning of all overlaid units, 
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Overlay buffer 
management 

Chapter 78, Using overlays 

and a {$F+} compiler directive at the beginning of all other units 
and the main program. 

Failing to observe the far call requirement in an overlaid program 
causes unpredictable and possibly catastrophic results when the 
program is executed. 

The {SO unitname} compiler directive is used in a program to 
indicate which units to overlay. This directive must be placed 
after the program's uses clause, and the uses clause must name 
the Overlay standard unit before any of the overlaid units. Here is 
an example: 

program Editor; 

{$F+} { Force FAR calls for all procedures & functions 

uses 
Overlay, Crt, Dos, EdInOut, EdFormat, EdPrint, EdFind, EdMain; 

{SO EdlnOut} 
{SO EdFormat} 
{SO EdPrint} 
{SO EdFind} 
{SO EdMatn} 

The compiler reports an error if you attempt to overlay a unit that 
wasn't compiled in the {$O+} state. Of the standard units, the only 
one that can be overlaid is Dos; the other standard units, can't be 
overlaid. Also, programs containing overlaid units must be 
compiled to disk; the compiler reports an error if you attempt to 
compile such programs to memory. 

The Turbo Pascal overlay buffer is best described as a ring buffer 
that has a head pointer and a tail pointer. Overlays are always 
loaded at the head of the buffer, pushing" older" ones toward the 
tail. When the buffer becomes full (that is, when there isn't 
enough free space between the head and the tail), overlays are 
disposed of at the tail to make room for new ones. 

Because ordinary memory isn't circular in nature, the actual 
implementation of the overlay buffer involves a few more steps to 
make the buffer appear to be a ring. Figure 18.1 illustrates the 
process. The figure shows a progression of overlays being loaded 
into an initially empty overlay buffer. Overlay A is loaded first, 
followed by B, then C, and finally D. Shaded areas indicate free 
buffer space. 
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Figure 18.1 
Loading and disposing of 

overlays 

Head 
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Tail 
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Hea d 
...... 

Overlay C 

Overlay B 

Overlay A 

Tail 

Head 

Tail 

Tail 
Hea d 

Overlay B 

Overlay A 

Step 4 

Overlay C 

Overlay B 

Overlay D 

As you can see, a couple of interesting things happen in the 
transition from step 3 to step 4. First, the head pointer wraps 
around to the bottom of the overlay buffer, causing the overlay 
manager to slide all loaded overlays (and the tail pointer) 
upward. This sliding is required to keep the area between the 
head pointer and the tail pointer free. Second, to load overlay D, 
the overlay manager has to dispose of overlay A from the tail of 
the buffer. Overlay A in this case is the least recently loaded over­
lay and, therefore, the best choice for disposal when something . 
has to go. The overlay manager continues to dispose of overlays 
at the tail to make room for new ones at the head, and each time 
the head pointer wraps around, the sliding operation repeats. 

Although this is the default mode of operation for Turbo Pascal's 
overlay manager, you can use an optional optimization of the 
overlay-management algorithm. 

Imagine that overlay A contains a number of frequently used 
routines. Even though these routines are used all the time, A is 
still thrown out of the overlay buffer occasionally, only to be 
reloaded again shortly thereafter. 

The overlay manager knows nothing about the frequency of calls 
to routines in A-only that a call is made to a routine in A and A 
isn't in memory, so it has to load A. One solution to this problem 
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might be to trap every call to routines in A and then, at each call, 
move A to the head of the overlay buffer to reflect its new status 
as the most recently used overlay. Intercepting calls this way is 
very costly in terms of execution speed and, in some cases, can 
slow down the application even more than the additional overlay 
load operations does. 

Turbo Pascal offers a solution that incurs almost no performance 
overhead and yet successfully identifies frequently used overlays 
that shouldn't be unloaded: When an overlay gets close to the tail 
of the overlay buffer, it's put on "probation." 

If, during this probationary period, a call is made to a routine in 
the overlay, it's "reprieved," and isn't disposed of when it reaches 
the tail of the overlay buffer. Instead, it's moved to the head of the 
buffer and gets another free ride around the overlay buffer ring. 
On the other hand, if no calls are made to an overlay during its 
probationary period, thereby indicating infrequent use, the over­
lay is disposed of when it reaches the tail of the overlay buffer. 

The net effect of the probation/ reprieval scheme is that frequently 
used overlays are kept in the overlay buffer at the cost of intercep­
ting just one call every time the overlay gets close to the tail of the 
overlay buffer. 

Two overlay-manager routines, OvrSetRetry and OvrGetRetry, 
control the probation/ reprieval mechanism. OvrSetRetry sets the 
size of the area in the overlay buffer to keep on probation and 
OvrGetRetry returns the current setting. 

If an overlay falls within the last OvrGetRetry bytes before the 
overlay buffer tail, it's automatically put on probation. Any free 
space in the overlay buffer is considered part of the probation 
area. 

Overlay procedures and functions 

Chapter 78, Using overlays 

The Overlay unit-defines a few procedures and functions; find 
their definitions as well as more details in Chapter I, "Library 
reference," in the Programmer's Reference. 
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Table 18.1 
Overlay unit procedures and 

functions 

Procedure 
or function 

OvrClearBuf 

OvrGetBuf 

OvrGetRetry 

Ovrlnit 

OvrlnitEMS 

OvrSetBuf 

OvrSetRetry 

Description 

Clears the overlay buffer. 

Returns the current size of the overlay buffer. 

Returns the current size of the probation area, the 
value last set with OvrSetRetry. 

Initializes the overlay manager and opens the 
overlay file. 

Loads the overlay file into EMS. 

Sets the size of the overlay buffer. 

Sets the size of the "probation area" in the 
overlay buffer. 

Variables and constants 
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Table 18.2 
Overlay unit variables 

Result codes 

The Overlay unit defines five variables: 

Variable 

OvrFileMode 

OvrLoadCount 

OvrReadBuf 

OvrResult 

OvrTrapCount 

Description 

Determines the access code to pass to DOS when 
the overlay file is opened. 

The variable incremented each time an overlay is 
loaded. 

The procedure variable that lets you intercept 
overlay load operations. 

The variable that holds the result code when an 
Overlay procedure executes. 

The variable incremented each time an overlaid 
routine is intercepted by the overlay manager. 

Find the values of these variables in Chapter 1, "Library 
reference," in the Programmer's Reference. 

Errors in the Overlay unit are reported through the OvrResult 
variable. Look up "ovrXXXX constants" in Chapter 1, "Library 
reference," in the Programmer's Reference to find OvrResult values. 
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Designing overlaid programs 

Overlay code 
generation 

The for call 

This section provides some important information on designing 
programs with overlays. Look it over carefully, because a number 
of the issues discussed are vital to well-behaved overlaid 
applications. 

Turbo Pascal allows a unit to be overlaid only if it was compiled 
with {$O+}. In this state, the code generator takes special precau­
tions when passing string and set constant parameters from one 

. overlaid procedure or function to another. For example, if UnitA 
contains a procedure with the following header: 

procedure WriteStr(S: string); 

and if UnitB contains the statement 

writeStr(IHello world ... '); 

then Turbo Pascal places the string constant 'Hello world ... ' in 
UnitB's code segment, and passes a pointer to it to the WriteStr 
procedure. If both units are overlaid, this doesn't work because, at 
the call to WriteStr, UnitB's code segment can be overwritten by 
UnitA's and the string pointer becomes invalid. The {$O+} dir­
ective is used to avoid such problems; whenever Turbo Pascal 
detects a call from one unit compiled with {$O+} to another unit 
compiled with {$O+}, the compiler copies all code-segment-based 
constants into stack temporaries before passing pointers to them. 

The use of {$O+} in a unit doesn't force you to overlay that unit. It 
just instructs Turbo Pascal to ensure that the unit can be overlaid, 
if so desired. If you develop units that you plan to use in overlaid 
as well as nonoverlaid applications, compiling them with {$O+} 
ensures that you can do both with just one version of the unit. 

requirement At any call to an overlaid procedure or function in another 
module, you must guarantee that all currently active procedures 
or functions use the far call model. 

Chapter 78, Using overlays 

This is best illustrated by example: Assume that Ovr A is a 
procedure in an overlaid unit, and that MainB and Maine are 
procedures in the main program. If the main program calls 
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Initializing the 
overlay manager 

198 

Maine, which calls MainB, which then calls OvrA, then at the call 
to OvrA, MainB and Maine are active (they have not yet returned) 
and they are required to use the far call model. Being declared in 
the main program, MainB and Maine would normally use the 
near call model. In this case, a {$F+} compiler directive must be 
used to force the far call model into effect. 

The easiest way to satisfy the far call requirement is to place a 
{$F+} directive at the beginning of the main program and each 
unit. Alternatively, you can change the default $F setting to {$F+} 
using a /$F+ command-line directive or the Force Far Calls check 
box in the Options I Compiler dialog box. Compared to the cost of 
mixing near and far calls, using far calls exclusively costs little­
one extra word of stack space per active procedure and one extra 
byte per call. 

Here we'll take a look at some examples of how to initialize the 
overlay manager. Place the initialization code before the first call 
to an overlaid routine. Typically you would do this at the 
beginning of the program's statement part. 

The following code shows just how little you need to initialize the 
overlay manager: 

begin 
Ovrlnit('EDITOR.OVR') ; 

end; 

No error checks are made. If there isn't enough memory for the 
overlay buffer or if the overlay file was not found, run-time error 
208 ("Overlay manager not installed") occurs when you attempt 
to call an overlaid routine. 

Here's another simple example that expands on the previous one: 

begin 
Ovrlnit('EDITOR.OVR') ; 
OvrlnitEMS; 

end; 

In this case, provided there is enough memory for the overlay 
buffer and that the overlay file can be located, the overlay 
manager checks to see if EMS memory is available. If it is, it loads 
the overlay file into EMS. 
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Chapter 78, Using overlays 

The initial overlay buffer size is as small as possible, or in other 
words, just big enough to contain the largest overlay. This might 
be adequate for some applications, but imagine a situation where 
a particular function of a program is implemented through two or 
more units, each of which is overlaid. If the total size of those 
units is larger than the largest overlay, a substantial amount of 
swapping occurs if the units make frequent calls to each other. 

The solution is to increase the size of the overlay buffer so that 
enough memory is available at any given time to contain all 
overlays that make frequent calls to each other. The following 
code demonstrates the use of OvrSetBuf to increase the overlay 
buffer size: 

canst 
OvrMaxSize = 80000; 

begin 
Ovrlnit('EDITOR.OVR'); 
OvrlnitEMS; 
OvrSetBuf(OvrMaxSize); 

end; 

There is no general formula for determining the ideal overlay 
buffer size. Only an intimate knowledge of the application and a 
bit of experimenting results in a suitable value. 

Using OvrlnitEMS to place the overlay file in EMS doesn't 
eliminate the need for an overlay buffer. Overlays must still be 
copied from EMS into "normal" memory in the overlay buffer 
before they can be executed, but because such in-memory 
transfers are significantly faster than disk reads, there is less need 
to increase the size of the overlay buffer. 

Remember, OvrSetBuf expands the overlay buffer by shrinking the 
heap. Therefore, the heap must be empty or OvrSetBufhas no 
effect. If you are using the Graph unit, make sure you call 
OvrSetBuf before you call InitGraph, which allocates memory on the 
heap. 

Here's a rather elaborate example of overlay-manager initiali­
zation with full error-checking: 

canst 
OvrMaxSize = 80000; 

var 
OvrNarne: string[79]; 
Size: Longint; 
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begin 
OvrName := 'EDITOR.OVR'; 
repeat 

OvrInit(OvrName); 
if OvrResult = OvrNotFound then 

begin 
Writeln('Overlay file not found: " OvrName, , .'); 
Write('Enter correct overlay file name: '); 
Readln(OvrName); 

end; 
until OvrResult <> OvrNotFound; 
if OvrResult <> OvrOk then 
begin 

Writeln('Overlay-manager error.'); 
Halt (1) ; 

end; 
OvrInitEMS; 
if OvrResult <> OvrOk then 
begin 

case OvrResult of 
ovrIOError: Write('Overlay file I/O error'); 
ovrNoEMSDriver: Write('EMS driver not installed'); 
ovrNoEMSMemory: Write('Not enough EMS memory'); 

end; 
Write('. Press Enter ... '); 
Readln; 

end; 
OvrSetBuf(OvrMaxSize) ; 

end; 

First, if the default overlay file name isn't correct, the user is 
repeatedly prompted for a correct file name. 

Next, a check is made for other errors that might have occurred 
during initialization. If an error is detected, the program halts 
because errors in Ovrlnit are fatal. (If they are ignored, a run-time 
error occurs upon the first call to an overlaid routine.) 

Assuming successful initialization, a call to OvrlnitEMS is made 
to load the overlay file into EMS if possible. In case of error, a 
diagnostic message is displayed, but the program isn't halted. 
Instead, it continues to read overlays from disk. 

Finally, OvrSetBuf is called to set the overlay buffer size to a 
suitable value, determined through analysis and experimentation 
with the particular application. Errors from OvrSetBuf are 
ignored, although OvrResult might return an error code of-3 
(OvrNoMemory). If there isn't enough memory, the overlay 
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Initialization 

manager continues to use the minimum buffer that was allocated 
when the program started. 

sections Like static units, overlaid units can have an initialization section. 

Chapter 18, Using overlays 

Although overlaid initialization code is no different from normal 
overlaid code, the overlay manager must be initialized first so it 
can load and execute overlaid units. 

Referring to the earlier Editor program, assume that the EdInOut 
and EdMain units have initialization code. This requires that 
OvrInit is called before EdInOut's initialization code. The only way 
to do that is to create an additional nonoverlaid unit that goes 
before EdInOut and calls OvrInit in its initialization section: 

unit Edlnit; 
interface 
implementation 
uses Overlay; 
const 

OvrMaxSize = 80000; 
begin 

Ovrlnit('EDITOR.OVR') ; 
OvrlnitEMS; 
OvrSetBuf(OvrMaxSize) ; 

end. 

The EdInit unit must be listed in the program's uses clause before 
any of the overlaid units: 

program Editor; 

{$F+} 

uses Overlay, Crt, Dos, Edlnit, EdlnOut, EdFormat, EdPrint, EdFind, 
EdMain; 

{SO EdlnOut} 
{SO EdFormat} 
{SO EdPrint} 
{SO EdFind} 
{SO EdMain} 

In general, although initialization code in overlaid units is indeed 
possible, you should avoid it for a number of reasons. 

First, the initialization code, even though it's executed only once, 
is a part of the overlay, and occupies overlay-buffer space when­
ever the overlay is loaded. Second, if a number of overlaid units 
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What not to 

have initialization code, each of them has to be read into memory 
when the program starts. 

A much better approach is to gather all the initialization code into 
an overlaid initialization unit, which is called once at the begin-

. ning of the program, and then never referenced again. 

overlay Certain units can't be overlaid. In particular, don't try to overlay 
the following: 

Debugging 
overlays 

• Units compiled in the {$O-} state. The compiler reports an error 
if you attempt to overlay a unit that wasn't compiled with 
{$O+}. Such nonoverlay units include System, Overlay, Crt, 
Graph, Turbo3, and Graph3. 

• Units that contain interrupt handlers. Due to the non-reentrant 
nature of the DOS operating system, units that implement 
interrupt procedures should not be overlaid. An example of 
such a unit is the Crt standard unit, which implements a 
Ctrl+Break interrupt handler. 

• BGI drivers or fonts registered with calls to RegisterBGldriver or 
RegisterBGIfont. 

Calling overlaid routines via procedure pointers is fully sup­
ported by Turbo Pascal's overlay manager. Examples of the use of 
procedure pointers include exit procedures and text-file device 
drivers. 

The overlay manager also supports passing overlaid procedures 
and functions as procedural parameters and assigning overlaid 
procedures and functions to procedural type variables. 

Most debuggers have very limited overlay debugging capabilities, 
if any at all. This isn't so with Turbo Pascal and Turbo Debugger. 
The integrated debugger fully supports single-stepping and 
breakpoints in overlays in a manner completely transparent to 
you. By using overlays, you can easily engineer and debug huge 
applications-all from inside the IDE or by using Turbo 
Debugger. 
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External routines 
in overlays Like normal Pascal procedures and functions, external assembly 

language routines must observe certain programming rules to 
work correctly with the overlay manager. 

Chapter 18, Using overlays 

If an assembly language routine makes calls to any overlaid 
procedures or functions, the assembly language routine must use 
the far model, and it must set up a stack frame using the BP 
register. For example, assuming that OtherProc is an overlaid 
procedure in another unit, and that the assembly language 
routine ExternProc calls it, then ExternProc must use the FAR 
model and set up a stack frame. For example, 

ExternProc PROC FAR 

PUSH BP jSave BP 
MOV BP,SP jSet up stack frame 
SUB SP,LocalSize jAllocate local variables 

CALL OtherProc jCall another overlaid unit 

MOV SP,BP jDispose of local variables 
POP BP jRestore BP 
RET ParamSize jReturn 

ExternProc ENDP 

LocalSize is the size of the local variables and ParamSize is the size 
of the parameters. If LocalSize is zero, you can omit the two lines 
to allocate and dispose of local variables. 

These requirements are the same if ExternProc makes indirect 
references to overlaid procedures or functions. For example, if 
OtherProc makes calls to overlaid procedures or functions, but 
isn't itself overlaid, ExternProc must still use the FAR model and 
still has to set up a stack frame. 

When an assembly language routine doesn't make any direct or 
indirect references to overlaid procedures or functions, there are 
no special requirements; the assembly language routine is free to 
use the near model and it doesn't have to set up a stack frame. 

Overlaid assembly language routines should not create variables 
in the code segment, because any modifications made to an 
overlaid code segment are lost when the overlay is disposed of. 
Likewise, pointers to objects based in an overlaid code segment 
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can't be expected to remain valid across calls to other overlays, 
because the overlay manager freely moves around and disposes 
of overlaid code segments. 

Installing an overlay-read function 

Don't attempt to call any 
overlaid routines from within 

your overlay-read function­
such calls crash the system. 
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The OvrReadBuf procedure variable lets you intercept overlay 
load operations. For example, you can implement error handling 
or check that a removable disk is present. Whenever the overlay 
manager needs to read an overlay, it calls the function whose 
address is stored in OvrReadBuf If the function returns zero, the 
overlay manager assumes that the operation was successful; if the 
function result is nonzero, the compiler generates run-time error 
209. The OvrSeg parameter indicates what overlay to load, but as 
you'll see later, you won't need to access this information. 

To install your own overlay-read function, you must first save the 
previous value of OvrReadBufin a variable of type OvrReadFunc, 
and then assign your overlay-read function to OvrReadBuf Within 
your read function, you should call the saved read function to 
perform the actual load operation. Any validations you want to 
perform, such as checking that a removable disk is present, 
should go before the call to the saved read function, and any error 
checking should go after the call. 

The code to install an overlay-read function should go right after 
the call to Ovrlnit; at this point, OvrReadBuf contains the address 
of the default disk read function. 

If you also call OvrlnitEMS, it uses your read function to read 
overlays from disk into EMS memory, and if no errors occur, it 
stores the address of the default EMS read function in 
Ovr ReadBuf If you also wish to override the EMS read function, 
simply repeat the installation process after the call to OvrlnitEMS. 

The default disk-read function returns zero if it succeeds, or a 
DOS error code if it fails. Likewise, the default EMS-read function 
returns 0 if it succeeds, or an EMS error code (ranging from $80 
through $FF) if it fails. For details on DOS error codes, refer to the 
Programmer's Reference. For details on EMS error codes, refer to 
your Expanded Memory Specification documentation. 

The following code fragment demonstrates how to write and 
install an overlay-read function. The new overlay-read function 
repeatedly calls the saved overlay-read function until no errors 
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occur. Any errors are passed to the DOSError or EMSError pro­
cedures (not shown here) so that they can present the error to the 
user. Notice how the OvrSeg parameter is just passed on to the 
saved overlay-read function and never directly handled by the 
new overlay-read function. 

uses Overlay; 
var 

SaveOvrRead: OvrReadFunc; 
UsingEMS: Boolean; 

function MyOvrRead(OvrSeg: Word): Integer; far; 
var 

E: Integer; 
begin 

repeat 
E := SaveOvrRead(OvrSeg); 
if E <> 0 then 

if UsingEMS then 
EMSError(E) else DOSError(E); 

until E = 0; 
MyOvrRead := 0; 

end; 

begin 
OvrInit('MYPROG.OVR') ; 
SaveOvrRead := OvrReadBuf; 
OvrReadBuf := MyOvrRead; 
UsingEMS := False; 
OvrInitEMS; 
if OvrResult = OvrOK then 
begin 

SaveOvrRead := OvrReadBuf; 
OvrReadBuf := MyOvrRead; 
UsingEMS := True; 

end; 

end. 

{ Save disk default 
{ Install ours 

Save EMS default 
{ Install ours 

Overlays in . EXE files 

Chapter 78, Using overlays 

Turbo Pascal allows you to store your overlays at the end of your 
application's .EXE file rather than in a separate .OVR file. To 
attach an .OVR file to the end of an .EXE file, use the DOS COPY 
command with a 18 command-line switch, for example, 

COPY/B MYPROG.EXE + MYPROG.OVR 
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You must make sure that the .EXE file was compiled without 
Turbo Debugger debug information. In the IDE, make sure the 
Standalone option isn't checked in Options I Debugger. With the 
command-line version of the compiler, don't specify a IV switch. 

To read overlays from the end of an .EXE file instead of from a 
separate .OVR file, simply specify the .EXE file name in the call to 
Ovrlnit. If you are running under DOS 3.x or greater, you can use 
the ParamStr standard function to obtain the name of the .EXE file; 
for example, 

Ovrlnit(PararnStr(O))i 
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Memory issues 
This chapter describes in detail the ways Turbo Pascal programs 
use memory. We'll look at the memory map of a Turbo Pascal 
application, internal data formats, the heap manager, and direct 
memory access. 

The Turbo Pascal memory map 

Chapter 79, Memory issues 

Figure 19.1 depicts the memory map of a Turbo Pascal program. 

The Program Segment Prefix (PSP) is a 256-byte area built by DOS 
when the .EXE file is loaded. The segment address of PSP is 
stored in the predeclared variable PrefixSeg. 

Each module, which includes the main program and each unit, 
has its own code segment. The main program occupies the first 
code segment; the code segments that follow it are occupied by 
the units (in reverse order from how they are listed in the uses 
clause), and the last code segment is occupied by the System unit. 
The size of a single code segment can't exceed 64K, but the total 
size of the code is limited only by the available memory. 
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Figure 19.1 
Turbo Pascal memory map 
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Top of DOS memory 
HeapEnd--r-----------------------. 

Free memory 

HeapPtr - ...•••.......... "f ................ . 

Heap (grows upward) 
HeapOrg --+--------=---=-----=-----------~ OvrHeapEnd 

Overlay buffer 
1------------------------....- OvrHeapOrg 

Stack (grows downward) 

1 
SSeg:SPtr- --------------------------- - -------

Free stack 
SSeg:OOOO-I--------------I 

Global variables 
- -- - - - - -- - -- - - - -- - - - - - -- - -- - -- - --- -I+---

Typed constants 
DSeg:OOOO _i--------------i 

System unit code segment 

First unit code segment 

1---__ ---'-_- -
Last unit code segment 

Main program code segment 

Program segment prefix (PSP) 

PrefixSeg __ "----------------------------' 
Low memory 

Contents 
of an 

.EXE file 
image 

The data segment (addressed through D5) contains all typed 
constants followed by all global variables. The D5 register is never 
changed during program execution. The size of the data segment 
can't exceed 64K. 

On entry to the program, the stack segment register (55) and the 
stack pointer (5P) are loaded so that 55:5P points to the first byte 
past the stack segment. The 55 register is never changed during 
program execution, but 5P can move downward until it reaches 
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the bottom of the segment. The size of the stack segment can't 
exceed 64K; the default size is 16K, but this can be changed with a 
$M compiler directive. 

The Overlay standard unit uses the overlay buffer to store overlaid 
code. The default size of the overlay buffer corresponds to the size 
of the largest overlay in the program; if the program has no 
overlays, the size of the overlay buffer is zero. The size of the 
overlay buffer can be increased through a call to the OvrSetBuf 
routine in the Overlay unit; in that case, the size of the heap is 
decreased accordingly, by moving HeapOrg upwards. 

The heap stores dynamic variables, that is, variables allocated 
through calls to the New and GetMem standard procedures. It 
occupies all or some of the free memory left when a program is 
executed. The actual size of the heap depends on the minimum 
and maximum heap values, which can be set with the $M com­
piler directive. Its size is guaranteed to be at least the minimum 
heap size and never more than the maximum heap size. If the 
minimum amount of memory isn't available, the program doesn't 
execute. The default heap minimum is 0 bytes, and the default 
heap maximum is 640K; this means that by default the heap 
occupies all remaining memory. 

As you might expect, the heap manager (which is part of Turbo 
Pascal's run-time library) manages the heap. It's described in 
detail in the following section. 

The heap manager 

Chapter 79, Memory issues 

The heap is a stack-like structure that grows from low memory in 
the heap segment. The bottom of the heap is stored m the variable 
HeapOrg, and the top of the heap, corresponding to the bottom of 
free memory, is stored in the variable HeapPtr. Each time a 
dynamic variable is allocated on the heap (via New or GetMem), 
the heap manager moves HeapPtr upward by the size of the 
variable, in effect stacking the dynamic variables on top of each 
other. 

HeapPtr is always normalized after each operation, forcing the 
offset part into the range $0000 to $OOOF. The maximum size of a 
single variable that can be allocated on the heap is 65,519 bytes 
(corresponding to $10000 minus $OOOF), because every variable 
must be completely contained in a single segment. 
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Disposal methods 
The dynamic variables stored on the heap are disposed of in one 
of two ways: (1) through Dispose or FreeMem or (2) through Mark 
and Release. The simplest scheme is that of Mark and Release; for 
example, if the following statements are executed: 

New(Ptrl)i 
New(Ptr2)i 
Mark (P) i 

New(Ptr3)i 
New(Ptr4)i 
New(Ptr5) i 

the layout of the heap will then look like this figure: 

Figure 19.2 HeapEnd High 
memory Disposal method using Mark 

and Release 

Executing Release(HeapOrg) 
completely disposes of the 

entire heap because 
HeapOrg points to the 

bottom of the heap. 
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HeapPtr 

Ptr5 

Ptr4 

Ptr3 

Ptr2 

Ptr1 

Contents of Ptr5" 

Contents of Ptr4" 

Contents of Ptr3" 

Contents of Ptr2" 

Contents of Ptr1" Low 
memory 

The Mark(P) statement marks the state of the heap just before Ptr3 
is allocated (by storing the current HeapPtr in P). If the statement 
Release(P) is executed, the heap layout becomes like that of 
Figure 19.3, effectively disposing of all pointers allocated since the 
call to Mark. 
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Figure 19.3 
Heap layout with Release(P) HeapEnd -+r--------------, 

executed 
High 
memory 

Chapter 79, Memory issues 

HeapPtr~-------------l 

Contents of Ptr2" 
Ptr2-.--------------i 

Contents of Ptr1" 
Ptr1 ----------------' 

Low 
memory 

For applications that dispose of pointers in exactly the reverse 
order of allocation, the Mark and Release procedures are very effi­
cient. Yet most programs tend to allocate and dispose of pointers 
in a more random manner, requiring the more sophisticated 
management technique implemented by Dispose and FreeMem. 
These procedures allow an application to dispose of any pointer 
at any time. 

When a dynamic variable that isn't the topmost variable on the 
heap is disposed of through Dispose or FreeMem, the heap be­
comes fragmented. Assuming that the same statement sequence 
has been executed, then after executing Dispose(Ptr3), a "hole" is 
created in the middle of the heap (see Figure 19.4). 
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Figure 19.4 
Creating a "hole" in the HeapEnd 

heap 
High 
memory 

HeapPtr 

Ptr5 

Ptr4 

Ptr2 

Ptr1 

Contents of Ptr5" 

Contents of Ptr4" 

Contents of Ptr2" 

Contents of Ptr1" Low 
memory 

If New(Ptr3) had been executed now, it would again occupy the 
same memory area. On the other hand, executing Dispose(Ptr4) 
enlarges the free block, because Ptr3 and Ptr4 were neighboring 
blocks (see Figure 19.5). 

Figure 19.5 
Enlarging the free block HeapEnd --.---------------, High 

memory 

HeapPtr--t----------------i 
Contents of Ptr5" 

Ptr5 --t----~-------____i 

Contents of Ptr2" 
Ptr2 -+/------------____i 

Contents of Ptr1" 
Ptr1 ----------------' 

Low 
memory 

Finally, executing Dispose(PtrS) first creates an even bigger free 
block, and then lowers HeapPtr. This, in effect, releases the free 
block, because the last valid pointer is now Ptr2 (see Figure 19.6). 
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Figure 19.6 
Releasing the free block HeapEnd ~----------------, High 

memory 

The free list 

Chapter 79, Memory issues 

HeapPtr-t----------------i 
Contents of Ptr2" 

Ptr2 -t----------------i 
Contents of Ptr1" 

Ptr1 -""----------------' 
Low 
memory 

The heap is now in the same state as it would be after executing 
Release(P), as shown in Figure 19.3. The free blocks created and 
destroyed in the process were tracked for possible reuse, however. 

The addresses and sizes of the free blocks generated by Dispose 
and FreeMem operations are kept on afree list. Whenever a 
dynamic variable is allocated, the free list is checked before the 
heap is expanded. If a free block of adequate size exists (it's 
greater than or equal to the size of the requested block size), it's 
used. 

The Release procedure always clears the free list, therefore causing 
the heap manager to "forget" about any free blocks that might 
exist below the heap pointer. If you mix calls to Mark and Release 
with calls to Dispose and FreeMem, you must ensure that no such 
free blocks exist. 

The FreeList variable in the System unit points to the first free 
block in the heap. This block contains a pointer to the next free 
block, which contains a pointer to the following free block, and so 
on. The last free block contains a pointer to the top of the heap 
(that is, to the location given by HeapPtr). If there are no free 
blocks on the free list, FreeList will be equal to HeapPtr. 

The format of the first eight bytes of a free block are given by the 
TFreeRec type as follows: 
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type 
PFreeRec = ATFreeRec; 
TFreeRec = record 

Next: PFreeRec; 
Size: Pointer; 

end; 

The Next field points to the next free block, or to the same location 
as HeapPtr if the block is the last free block. The Size field encodes 
the size of the free block. The value in Size isn't a normal 32-bit 
value; rather, it's a "normalized" pointer value with a count of free 
paragraphs (16-byte blocks) in the high word, and a count of free 
bytes (between 0 and 15) in the low word. The following BlockSize 
function converts a Size field value to a normal Longint value: 

function BlockSize(Size: Pointer): Longint; 
type 

PtrRec = record La, Hi: Word end; 
begin 

BlockSize := Longint(PtrRec(Size) .Hi) * 16 + PtrRec(Size) .Lo; 
end; 

To guarantee that there will always be room for a TFreeRec at the 
beginning of a free block, the heap manager rounds the size of 
every block allocated by New or GetMem upwards to an 8-byte 
boundary. Eight bytes are allocated for blocks of size 1 .. 8, 16 bytes 
are allocated for blocks of size 9 .. 16, and so on. This might seem 
an excessive waste of memory at first, and it would be if every 
block was just 1 byte in size. Blocks are usually larger, however, 
and so the relative size of the unused space is less. 

The 8-byte granularity factor ensures that a number of random 
allocations and deallocations of blocks of varying small sizes, 
such as would be typical for variable-length line records in a text­
processing program, don't heavily fragment the heap. For 
example, say a 50-byte block is allocated and disposed of, thereby 
becoming an entry on the free list. The block would have been 
rounded to 56 bytes (7*8), and a later request to allocate anywhere 
from 49 to 56 bytes would completely reuse the block, instead of 
leaving 1 to 7 bytes of free (but most likely unusable) space, which 
would fragment the heap. 
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The HeapError 
variable 

Chapter 79, Memory issues 

The HeapError variable allows you to install a heap-error function, 
which is called whenever the heap manager can't complete an 
allocation request. HeapError is a pointer that points to a function 
with the following header: 

function HeapFunc(Size: Word): Integer; far; 

Note that the far directive forces the heap-error function to use 
the FAR call model. 

The heap-error function is installed by assigning its address to the 
HeapError variable: 

HeapError := @HeapFunc; 

The heap-error function is called whenever a call to New or 
GetMem can't complete the request. The Size parameter contains 
the size of the block that couldn't be allocated, and the heap-error 
function should attempt to free a block of at least that size. 

Depending on its success, the heap-error function should return 0, 
I, or 2. A return of 0 indicates failure, causing a run-time error to 
occur immediately. A return of 1 also indicates failure, but instead 
of a run-time error, it causes New or GetMem to return a nil 
pointer. Finally, a return of 2 indicates success and causes a retry 
(which could also cause another call to the heap-error function). 

The standard heap-error function always returns 0 and causes a 
run-time error whenever a call to New or GetMem can't be 
completed. For many applications, however, the simple heap­
error function that follows is more appropriate: 

function HeapFunc(Size: Word): Integer; far; 
begin 

HeapFunc := 1; 
end; 

When installed, this function causes New or GetMem to return nil 
when they can't complete the request, instead of aborting the 
program. 

A call to the heap-error function with a Size parameter of 0 means 
that the heap manager has just expanded the heap by moving 
HeapPtr upwards. This occurs whenever there are no free blocks 
on the free list, or when all free blocks are too small for the 
allocation request. Such a call doesn't indicate an error condition, 
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because there was still adequate room for expansion between 
HeapPtr and HeapEnd. Instead, the call indicates that the unused 
area above HeapPtr has shrunk, and the heap manager ignores the 
return value. 

Internal data formats 

Integer types 

Char types 

Boolean types 

218 

The next several pages discuss the internal data formats of Turbo 
Pascal. 

The format selected to represent an integer-type variable depends 
on its minimum and maximum bounds: 

• If both bounds are within the range -128 . .127 (Shortint), the 
variable is stored as a signed byte. 

• If both bounds are within the range 0 .. 255 (Byte), the variable is 
stored as an unsigned byte. 

• If both bounds are within the range -32768 . .32767 (Integer), the 
variable is stored as a signed word. 

• If both bounds are within the range 0 .. 65535 (Word), the variable 
is stored as an unsigned word. 

• Otherwise, the variable is stored as a signed double word 
(Longint). 

A Char, or a subrange of a Char type, is stored as an unsigned 
byte. 

A Boolean type is stored as a Byte, a ByteBool type is stored as a 
Byte, a WordBool type is stored as a Word, and a LongBool type is 
stored as a Longint. 

A Boolean type can assume the values 0 (False) and 1 (True). 
ByteBool, WordBool, and LongBool types can assume the value of 0 
(False) or nonzero (True). 
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Enumerated 
types 

Floating-point 
types 

The Real type 

Chapter 79, Memory issues 

An enumerated type is stored as an unsigned byte if the 
enumeration has 256 or fewer values; otherwise, it's stored as an 
unsigned word. 

The floating-point types (Real, Single, Double, Extended, and Camp) 
store the binary representations of a sign (+ or -), an exponent, and 
a significand. A represented number has the value 

+/- significand x 2exponent 

where the significand has a single bit to the left of the binary 
decimal point (that is, 0 <= significand < 2). 

In the figures that follow, msb means most significant bit, and lsb 
means least significant bit. The leftmost items are stored at the 
highest addresses. For example, for a real-type value, e is stored in 
the first byte,fin the following five bytes, and s in the most 
significant bit of the last byte. 

A 6-byte (48-bit) Real number is divided into three fields: 

width in bits 
1 39 

msb Isbmsb 

The value v of the number is determined by the following: 

if 0 < e <= 255, then v = (-1)8 * 2(e-129) * (lof). 

if e = 0, then v = o. 

8 

e 

Isb 

The Real type can't store denormals, NaNs, or infinities. 
Denormals become zero when stored in a Real, and NaNs and 
infinities produce an overflow error if an attempt is made to store 
them in a Real. 
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The Single type A 4-byte (32-bit) Single number is divided into three fields: 

width in bits 
1 8 23 

msb Isbmsb 19b 

The value v of the number is determined by the following: 

if 0 < e < 255, then v = (-1)5 * 2(e-127) * (lof). 

if e = 0 and f <> 0, then v = (-1)5 * 2(-126) * (O.f). 
if e = 0 and f = 0, then v = (-1)5 * O. 
if e = 255 and f = 0, then v = (-1)5 * Inf. 
if e = 255 and f <> 0, then v is a NaN. 

The Double type An 8-byte (64-bit) Double number is divided into three fields: 

width in bits 
1 11 52 

msb Isbmsb 

The value v of the number is determined by the following: 

if 0 < e < 2047, then v = (-1)5 * 2(e-1023) * (lof). 

if e = 0 and f <> 0, then v = (-1)5 * 2(-1022) * (O.f). 
if e = 0 and f = 0, then v = (-1)5 * o. 
if e = 2047 and f = 0, then v = (-1)5 * Inf. 
if e = 2047 and f <> 0, then v is a NaN. 

The Extended type A la-byte (80-bit) Extended number is divided into four fields: 

width in bits 
1 15 63 

e 

msb 19b msb 

The value v of the number is determined by the following: 

if 0 <= e < 32767, then v = (-1)5 * 2(e-16383) * (i.f). 

if e = 32767 and f = 0, then v = (-1)5 * Inf. 
if e = 32767 and f <> 0, then v is a NaN. 

19b 

19b 
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The Camp type An 8-byte (64-bit) Camp number is divided into two fields: 

width in bits 

Pointer types 

String types 

Set types 

Chapter 79, Memory issues 

1 63 

d 

msb Isb 

The value v of the number is determined by the following: 

if s = 1 and d = 0, then v is a NaN 

Otherwise, v is the two's complement 64-bit value. 

A Pointer type is stored as two words (a double word), with the 
offset part in the low word and the segment part in the high 
word. The pointer value nil is stored as a double-word zero. 

A string occupies as many bytes as its maximum length plus one. 
The first byte contains the current dynamic length of the string, 
and the following bytes contain the characters of the string. The 
length byte and the characters are considered unsigned values. 
Maximum string length is 255 characters plus a length byte 
(stri ng [255]). 

A set is a bit array, where each bit indicates whether an element is 
in the set or not. The maximum number of elements in a set is 256, 
so a set never occupies more than 32 bytes. The number of bytes 
occupied by a particular set is calculated as 

ByteSize = (Max div 8) - (Min div 8) + 1 

where Min and Max are the lower and upper bounds of the base 
type of that set. The byte number of a specific element E is 

ByteNumber = (E div 8) - (Min div 8) 

and the bit number within that byte is 

BitNumber = E mod 8 

where E denotes the ordinal value of the element. 
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Array types 

Record types 

Object types 
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An array is stored as a contiguous sequence of variables of the 
component type of the array. The components with the lowest 
indexes are stored at the lowest memory addresses. A multi­
dimensional array is stored with the rightmost dimension 
increasing first. 

The fields of a record are stored as a contiguous sequence of 
variables. The first field is stored at the lowest memory address. If 
the record contains variant parts, then each variant starts at the 
same memory address. 

The internal data format of an object resembles that of a record. 
The fields of an object are stored in order of declaration, as a 
contiguous sequence of variables. Any fields inherited from an 
ancestor type are stored before the new fields defined in the 
descendant type. 

If an object type defines virtual methods, constructors, or destruc­
tors, the compiler allocates an extra field in the object type. This 
16-bit field, called the virtual method table (VMT) field, is used to 
store the offset of the object type's VMT in the data segment. The 
VMT field immediately follows after the ordinary fields in the 
object type. When an object type inherits virtual methods, con­
structors, or destructors, it also inherits a VMT field, so an addi­
tional one isn't allocated. 

Initialization of the VMT field of an instance is handled by the 
object type's constructor(s). A program never explicitly initializes 
or accesses the VMT field. 

The following examples illustrate the internal data formats of 
object types: 
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Figure 19.7 
Layouts of instances of 

TLocation, TPoint, and TCircie 

type 
PLocation = ATLocation; 
TLocation = object 

X, Y: Integer; 
procedure Init(PX, PY: Integer); 
function GetX: Integer; 
function GetY: Integer; 

end; 

PPoint = ATPoint; 
TPoint = object(TLocation) 

Color: Integer; 
constructor Init(PX, PY, PColor: Integer); 
destructor Done; virtual; 
procedure Show; virtual; 
procedure Hide; virtual; 
procedure MoveTo(PX, PY: Integer); virtual; 

end; 

PCircle = ATCircle; 
TCircle = object (TPoint) 

Radius: Integer; 
constructor Init(PX, PY, PColor, PRadius: Integer); 
procedure Show; virtual; 
procedure Hide; virtual; 
procedure Fill; virtual; 

end. 

Figure 19.7 shows layouts of instances of TLocation, TPoint, and 
TCircle; each box corresponds to one word of storage. 

Location Point Circle 

B x x 
y y 

Color Color 
VMT VMT 

Radius 

Virtual method tables Each object type that contains or inherits virtual methods, con­
structors, or destructors has a VMT associated with it, which is 
stored in the initialized part of the program's data segment. There 
is only one VMT per object type (not one per instance), but two 
distinct object types never share a VMT, no matter how identical 
they appear to be. VMTs are built automatically by the compiler, 
and are never directly manipulated by a program. Likewise, 
pointers to VMTs are automatically stored in object type instances 
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See page 225 for an 
explanation of dynamic 

method tables. 

by the object type's constructor(s) and are never directly 
manipulated by a program. 

The first word of a VMT contains the size of instances of the 
associated object type; this information is used by constructors 
and destructors to determine how many bytes to allocate or 
dispose of, using the extended syntax of the New and Dispose 
standard procedures. 

The second word of a VMT contains the negative size of instances 
of the associated object type; this information is used by the 
virtual method call validation mechanism to detect uninitialized 
objects (instances for which no constructor call has been made), 
and to check the consistency of the VMT. When virtual call 
validation is enabled (using the {$R+} compiler directive, which 
has been expanded to include virtual method checking), the 
compiler generates a call to a VMT validation routine before each 
virtual call. The VMT validation routine checks that the first word 
of the VMT isn't zero, and that the sum of the first and the second 
word is zero. If either check fails, the compiler generates run-time 
error 210. 

Enabling range checking and virtual method call checking slows 
down your program and makes it somewhat larger, so use the 
{R+} state only when debugging, and switch to the {$R-} state for 
the final version of the program. 

The third word of a VMT contains the data segment offset of the 
object type's dynamic method table (DMT), or zero if the object 
type has no dynamic methods. 

The fourth word of a VMT is reserved and always contains zero. 

Finally, starting at offset 8 in the VMT, is a list of 32-bit method 
pointers, one per virtual method in the object type, in order of 
declaration. Each slot contains the address of the corresponding 
virtual method's entry point. 

Figure 19.8 shows the layouts of the VMTs of the TPoint and 
TCircle types; each small box corresponds to one word of storage, 
and each large box corresponds to two words of storage. 
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Figure 19.8 
TPoint and TCircle's VMT 

layouts 

Dynamic method 
tables 

Chapter 79, Memory issues 

TPoint VMT TCircie VMT 

8 10 

-8 -10 

0 0 

0 0 

@TPoint.Done @TPoint.Done 

@TPoint.Show @TCircle.Show 

@TPoint.Hide @TCircle.Hide 

@TPoint.MoveTo @TPoint.MoveTo 

@TCircle.Fili 

Notice how TCircle inherits the Done and MoveTo methods from 
TPoint, and how it overrides the Show and Hide methods. 

As mentioned already, an object type's constructors contain 
special code that stores the offset of the object type's VMT in the 
instance being initialized. For example, given an instance P of 
type Pointer, and an instance C of type TCircle, a call to P.Init 
automatically stores the offset of TPoint's VMT in P's VMT field, 
and a call to C.lnit likewise stores the offset of TCircle's VMT in C's 
VMT field. This automatic initialization is part of a constructor's 
entry code, so when control arrives at the begin of the construc­
tor's statement part, the VMT field Self is already set up. 
Therefore, if the need arises, a constructor can make calls to 
virtual methods. 

The VMT for an object type contains a four-byte entry (a method 
pointer) for each virtual method declared in the object type and 
any of its ancestors. In cases where ancestral type(s) define a large 
number of virtual methods, the process of creating derived types 
can use up quite a lot of memory, especially if many derived types 
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are created. Even though the derived types can override only a 
few of the inherited methods, the VMT of each derived type 
contains method pointers for all inherited virtual methods, even if 
they haven't changed. 

Dynamic methods provide an alternative in such situations. 
Instead of encoding a pointer for all late-bound methods in an 
object type, a dynamic method table (DMT) encodes only the 
methods that were overridden in the object type. When descendant 
types override only a few of a large number of inherited late­
bound methods, the dynamic method table format uses less space 
than the format used by VMTs. 

The following two object types illustrate DMT formats: 

type 
TBase = object 

X: Integer; 
constructor Init; 
destructor Done; virtual; 
procedure P10; virtual 10; 
procedure P20; virtual 20; 
procedure P30; virtual 30; 
procedure P40; virtual 40; 

end; 

type 
TDerived = object(TBase) 

Y: Integer; 
constructor Init; 
destructor Done; virtual; 
procedure P10; virtual 10; 
procedure P30; virtual 30; 
procedure P50; virtual 50; 

end; 

Figures 19.9 and 19.10 shows the layouts of the VMTs and DMTs 
of TBase and TDerived. Each small box corresponds to one word of 
storage, and each large box corresponds to two words of storage. 
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Figure 19.9 
TBase's VMT and DMT layouts 

Chapter 19, Memory issues 
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An object type has a DMT only if it introduces or overrides 
dynamic methods. If an object type inherits dynamic methods, but 
doesn't override any of them or introduce new ones, it simply 
inherits the DMT of its ancestor. 

As is the case for VMTs, DMTs are stored in the initialized part of 
the application's data segment. 
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Figure 19.10 TDerived VMT TDerived DMT 
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The first word of a DMT contains the data segment offset of the 
parent DMT, or zero if there is no parent DMT. 

The second and third words of a DMT are used to cache dynamic 
method lookups, as is described on page 239. 

The fourth word of a DMT contains the DMT entry count. It's 
immediately followed by a list of words, each of which contain a 
dynamic method index, and then followed by a list of correspond­
ing method pointers. The length of each list is given by the DMT 
entry count. 

File types are represented as records. Typed files and untyped 
files occupy 128 bytes, which are laid out in the Dos unit as 
follows: 
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type 
FileRec = record 

Handle: Word; 
Mode: Word; 
RecSize: Word; 
Private: array[1 .. 26] of Byte; 
UserData: array[1 .. 16] of Byte; 
Name: array[O .. 79] of Char; 

end; 

Text files occupy 256 bytes, which are laid out as follows: 

type 
TextBuf = array[O . . 127] of Char; 
TextRec = record 

Handle: Word; 
Mode: Word; 
BufSize: Word; 
Private: Word; 
BufPos: Word; 
BufEnd: Word; 
BufPtr: ATextBuf; 
OpenFunc: Pointer; 
InOutFunc: Pointer; 
FlushFunc: Pointer; 
CloseFunc: Pointer; 
UserData: array[1 .. 16] of Byte; 
Name: array[O .. 79] of Char; 
Buffer: TextBuf; 

end; 

Handle contains the file's handle (when the file is open) as 
returned by DOS. 

The Mode field can assume one of the following J/ magic" values: 

const 
fmClosed = $D7BO; 
fmlnput = $D7B1; 
fmOutput = $D7B2; 
fmlnOut = $D7B3; 

fmClosed indicates that the file is closed. fmlnput and fmOutput 
indicate that the file is a text file that has been reset (jmlnput) or 
rewritten (jmOutput). fmlnOut indicates that the file variable is a 
typed or an untyped file that has been reset or rewritten. Any 
other value indicates that the file variable hasn't been assigned 
(and thereby not initialized). 
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Procedural types 

The UserData field is never accessed by Turbo Pascal, and is free 
for user-written routines to store data in. 

Name contains the file name, which is a sequence of characters 
terminated by a null character (#0). 

For typed files and untyped files, RecSize contains the record 
length in bytes, and the Private field is unused but reserved. 

For text files, BufPtr is a pointer to a buffer of BujSize bytes, BufPos 
is the index of the next character in the buffer to read or write, 
and BufEnd is a count of valid characters in the buffer. OpenFunc, 
InOutFunc, FlushFunc, and CloseFunc are pointers to the I/O 
routines that control the file. The section entitled "Text file device 
drivers" in Chapter 13 provides information on that subject. 

A procedural type is stored as a double word, with the offset part 
of the referenced procedure in the low word and the segment part 
in the high word. 

Direct memory access 
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Turbo Pascal implements three predefined arrays, Mem, Mem W, 
and MemL, which are used to directly access memory. Each com­
ponent of Mem is a byte, each component of MemW is a Word, and 
each component of MemL is a Longint. 

The Mem arrays use a special syntax for indexes: Two expressions 
of the integer type Word, separated by a colon, are used to specify 
the segment base and offset of the memory location to access. 
Here are some examples: 

Mem[$0040:$0049] := 7i 
Data := MemW[Seg(V) :OfS(V)]i 
MemLong := MemL[64:3*4]i 

The first statement stores the value 7 in the byte at $0040:$0049. 
The second statement moves the Word value stored in the first 2 
bytes of the variable V into the variable Data. The third statement 
moves the Longint value stored at $0040:$000C into the variable 
MemLong. 
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Direct port access 

Chapter 79, Memory issues 

For access to the 80x86 CPU data ports, Turbo Pascal implements 
two predefined arrays, Port and PortW. Both are one-dimensional 
arrays, and each element represents a data port, whose port 
address corresponds to its index. The index type is the integer 
type Word. Components of the Port array are of type Byte, and 
components of the PortWarray are of type Word. 

When a value is assigned to a component of Port or PortW, the 
value is output to the selected port. When a component of Port or 
PortWis referenced in an expression, its value is input from the 
selected port. 

Use of the Port and Port W arrays is restricted to assignment and 
reference in expressions only; that is, components of Port and 
PortW can't be used as variable parameters. Also, references to the 
entire Port or PortW array (reference without index) aren't 
allowed. 
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20 

Control issues 
This chapter describes in detail the various ways that Turbo 
Pascal implements program control. Included are calling con­
ventions and exit procedures. 

Calling conventions 

Chapter 20, Control issues 

Parameters are transferred to procedures and functions via the 
stack. Before calling a procedure or function, the parameters are 
pushed onto the stack in their order of declaration. Before return­
ing, the procedure or function removes all parameters from the 
stack. ' 

The skeleton code for a procedure or function call looks like this: 

PUSH Paraml 
PUSH Param2 

PUSH PararnX 
CALL ProcOrFunc 

Parameters are passed either by reference orby value. When a 
parameter is passed by reference, a pointer that points to the 
actual storage location is pushed onto the stack. When a param­
eter is passed by value, the actual value is pushed onto the stack. 

233 



Variable 
parameters Variable parameters (var parameters) are always passed by 

reference-a pointer that points to the actual storage location. 

Value parameters 

234 

Value parameters are passed by value or by reference depending 
on the type and size of the parameter. In general, if the value 
parameter occupies 1, 2, or 4 bytes, the value is pushed directly 
onto the stack. Otherwise a pointer to the value is pushed, and the 
procedure or function then copies the value into a local storage 
location. 

The 8086 doesn't support byte-sized PUSH and POP instructions, 
so byte-sized parameters are always transferred onto the stack as 
words. The low-order byte of the word contains the value, and 
the high-order byte is unused (and undefined). 

An integer type or parameter is passed as a byte, a word, or a 
double word, using the same format as an integer-type variable. 
(For double words, the high-order word is pushed before the 
low-order word so that the low-order word ends up at the lowest 
address.) 

A Char parameter is passed as an unsigned byte. 

A Boolean parameter is passed as a byte with the value 0 
or 1. 

An enumerated-type parameter is passed as an unsigned byte if 
the enumeration has 256 or fewer values; otherwise, it's passed as 
an unsigned word. 

A floating-point type parameter (Real, Single, Double, Extended, 
and Comp) is passed as 4,6,8, or 10 bytes on the stack. This is an 
exception to the rule that only 1-, 2-, and 4-byte values are passed 
directly on the stack. 

A pointer-type parameter is passed as two words (a double 
word). The segment part is pushed before the offset part so that 
the offset part ends up at the lowest address. 

A string-type parameter is passed as a pointer to the value. 

For a set type parameter, if the bounds of the element type of the 
set are both within the range 0 to 7, the set is passed as a byte. If 
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Open parameters 

Function results 

Chapter 20, Control issues 

the bounds are both within the range 0 to 15, the set is passed as a 
word. Otherwise, the set is passed as a pointer to an unpacked set 
that occupies 32 bytes. 

Arrays and records with I, 2, or 4 bytes are passed directly onto 
the stack. Other arrays and records are passed as pointers to the 
value. 

Open string parameters are passed by first pushing a pointer to 
the string and then pushing a word containing the size attribute 
(maximum length) of the string. 

Open array parameters are passed by first pushing a pointer to 
the array and then pushing a word containing the number of 
elements in the array less one. 

When using the built-in assembler, the value that the High 
standard function returns for an open parameter can be accessed 
by loading the word just below the open parameter. In this 
example, the FillString procedure, which fills a string to its 
maximum length with a given character, demonstrates this. 

procedure FillString(var Str: OpenString; Chr: Char); assembler; 
asm 

LES DI,Str { ES:DI = @Str } 
MOV CX,Str.Word[-2) (CX = High(Str) 
MOV AL,CL 
CLD 
STOSB ( Set Str[O) } 
MOV 
REP 

end; 

AL,Chr 
STOSB ( Set Str[l .. High) 

Ordinal-type function results are returned in the CPU registers: 
Bytes are returned in AL, words are returned in AX, and double 
words are returned in DX:AX (high-order word in DX, low-order 
word in AX). 

Real-type function results (type Real) are returned in the 
DX:BX:AX registers (high-order word in DX, middle word in BX, 
low-order word in AX). 
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NEAR and FAR 

80x87-type function results (type Single, Double, Extended, and 
Comp) are returned in the 80x87 coprocessor's top-of-stack register 
(ST(O)). 

Pointer-type function results are returned in OX:AX (segment part 
in OX, offset part in AX). 

For a string-type function result, the caller pushes a pointer to a 
temporary storage location before pushing any parameters, and 
the function returns a string value in that temporary location. The 
function must not remove the pointer. 

calls The 80x86 family of CPUs support two kinds of call and return 
instructions: near and far. The near instructions transfer control to 
another location within the same code segment, and the far 
instructions allow a change of code segment. 

A NEAR CALL instruction pushes a 16-bit return address (offset 
only) onto the stack, and a FAR CALL instruction pushes a 32-bit 
return address (both segment and offset). The corresponding RET 
instructions pop only an offset or both an offset and a segment. 

Turbo Pascal automatically selects the correct call model based on 
the procedure's declaration. Procedures declared in the interface 
section of a unit are far-they can be called from other units. 
Procedures declared in a program orin the implementation 
section of a unit are near-they can only be called from within 
that program or unit. 

For some specific purposes, a procedure can be required to be far. 
For example, if a procedure or function is to be assigned to a 
procedural variable, it must be far. The $F compiler directive is 
used to override the compiler's automatic call model selection. 
Procedures and functions compiled in the {$F+} state are always 
far; in the {$F-} state, Turbo Pascal automatically selects the 
correct model. The default state is {$F-}. 

Nested 
procedures and 

functions 
A procedure or function is said to be nested when it's declared 
within another procedure or function. By default, nested proce­
dures and functions always use the near call model, because they 
are visible only within a specific procedure or function in the 
same code segment. In an overlaid application, however, a {$F+} 
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Nested procedures and 
functions can't be declared 

with the external directive, 
and they can't be 

procedural parameters. 

Method calling 
conventions 

Chapter 20, Control issues 

directive is generally used to force all procedures and functions to 
be far, including those that are nested. 

When calling a nested procedure or function, the compiler 
generates a PUSH BP instruction just before the CALL, in effect 
passing the caller's BP as an additional parameter. Once the called 
procedure has set up its own BP, the caller's BP is accessible as a 
word stored at [BP + 4], or at [BP + 6] if the procedure is far. Using 
this link at [BP + 4] or [BP + 6], the called procedure can access the 
local variables in the caller's stack frame. If the caller itself is also a 
nested procedure, it also has a link at [BP + 4] or [BP + 6], and so 
on. The following example demonstrates how to access local 
variables from an inline statement in a nested procedure: 

procedure A; near; 
var 

IntA: Integer; 

procedure B; far; 
var 

IntB: Integer; 

procedure C; near; 
var 

IntC: Integer; 
begin 

asm 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 

end; 
end; 

begin C end; 

begin Bend; 

AX,l 
IntC,AX 
BX, [BPt4] 
SS: [BXtOFFSET IntB],AX 
BX, [BPt4] 
BX, S S: [BX t 6] 
SS: [BXtOFFSET IntA],AX 

{ IntC := 1 } 
{ B's stack frame} 
{ IntB := 1 } 
{ B's stack frame} 
{ A's stack frame} 
{ IntA := 1 } 

Methods use the same calling conventions as ordinary procedures 
and functions, except that every method has an additional 
implicit parameter, Self, that corresponds to a var parameter of the 
same type as the method's object type. The Self parameter is 
always passed as the last parameter, and always takes the form of 
a 32-bit pointer to the instance through which the method is 
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Virtual method 

called. For example, given a variable PP of type PPoint as defined 
on page 223, the call PP/\.MoveTo(10, 20) is coded as follows: 

MOV AX,10 iLoad 10 into AX 
PUSH AX iPass as PX parameter 
MOV AX,20 iLoad 20 into AX 
PUSH AX iPass as PY parameter 
LES DI,PP iLoad PP into ES:DI 
PUSH ES iPass as Self parameter 
PUSH DI 
MOV DI,ES: [DI+6] iPick up VMT offset from VMT field 
CALL DWORD PTR [DI+20] iCall VMT entry for MoveTo 

Upon returning, a method must remove the Self parameter from 
the stack, just as it must remove any normal parameters. 

Methods always use the far call model, regardless of the setting of 
the {$F} compiler directive. 

calls To call a virtual method, the compiler generates code that picks 
up the VMT address from the VMT field in the object, and then 
calls via the slot associated with the method. For example, given a 
variable PP of type Point (see page 223), the call PP/\.Show 
generates the following code: 

LES DI,PP iLoad PP into ES:DI 
PUSH ES iPass as Self parameter 
PUSH DI 
MOV DI,ES: [DI+6] iPick up VMT offset from VMT field 
CALL DWORD PTR [DI+12] iCall VMT entry for Show 

The type compatibility rules of object types allow PP to point at a 
Point or a TCircle, or at any other descendant of TPoint. And if you 
examine the VMTs shown on page 225, you'll see that for a TPoint, 
the entry at offset 12 in the VMT points to TPoint.Show; whereas 
for a TCircle, it points to TCircle.Show. Therefore, depending upon 
the actual run-time type of PP, the CALL instruction calls 
TPoint.Show or TCircle.Show, or the Show method of any other de­
scendant of TPoint. 

If Show had been a static method, the compiler would have 
generated this for the call to PP/\.Show: 
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Dynamic method 
calls 

Chapter 20, Control issues 

LES Dl,PP 
PUSH ES 
PUSH Ol 
CALL TPoint.Show 

iLoad PP into ES:Dl 
iPass as Self parameter 

iDirectly call TPoint.Show 

Here, no matter what PP points to, the code always calls the 
TPoint.Show method. 

Dispatching a dynamic method call is somewhat more compli­
cated and time consuming than dispatching a virtual method call. 
Instead of using a CALL instruction to call through a method 
pointer at a static offset in the VMT, the object type's DMT and 
parent DMTs must be scanned to find the topmost occurrence of a 
particular dynamic method index, and then a call must be made 
through the corresponding method pointer. This process involves 
far more instructions than can be coded in-line, so the Turbo 
Pascal run-time library (RTL) contains a dispatch-support routine 
that is used when making dynamic method calls. 

Had the Show method of the preceding type TPoint been declared 
as a dynamic method (with a dynamic method index of 200), the 
call PPA.Show, where PP is of type Point, would generate the 
following code: 

LES Ol,PP iLoad PP into ES:Dl 
PUSH ES iPass as Self parameter 
PUSH Ol 
MOV Ol,EX: [0l+6] iPick up VMT offset from VMT field 
MOV AX,200 iLoad dynamic method index into AX 
CALL Dispatch iCall RTL routine to dispatch call 

The RTL dispatcher first picks up the DMT offset from the VMT 
pointed to by the DI register. Then, using the" cached index" field 
of the DMT, the dispatcher checks if the dynamic method index of 
the method being called is the same as the last one that was 
called. If so, it immediately transfers control to the method, by 
jumping indirectly through the method pointer stored at the 
offset given by the" cached entry offset" field. 

If the dynamic index of the method being called isn't the same as 
the one stored in the cache, the dispatcher scans the DMT and the 
parent DMTs (by following the parent links in the DMTs) until it 
locates an entry with the given dynamic method index. The index 
and the offset of the corresponding method pointer is then stored 
in the DMT's cache fields, and control is transferred to the 
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Constructors and 
destructors 

method. If, for some reason, the dispatcher can't find an entry 
with the given dynamic method index, indicating that the DMTs 
have somehow been destroyed, it terminates the application with 
a run-time error 210. 

In spite of caching and a highly optimized RTL dispatch support 
routine, the dispatching of a dynamic method call takes sub­
stantially longer than a virtual method call. When the actions 
performed by the dynamic methods themselves take up a lot of 
time, however, the amount of space saved by using DMTs might 
outweigh this penalty. 

Constructors and destructors use the same calling conventions as 
other methods, except that an additional word-sized parameter, 
called the VMT parameter, is passed on the stack just before the 
Self parameter. 

For constructors, the VMT parameter contains the VMT offset to 
store in Selfs VMT field to initialize Self. 

When a constructor is called to allocate a dynamic object using the 
extended syntax of the New standard procedure, a nil pointer is 
passed in the Self parameter. The constructor allocates a new 
dynamic object, the address of which is passed back to the caller 
in DX:AX when the constructor returns. If the constructor can't al-

See "Constructor error locate the object, a nil pointer is returned in DX:AX. 
recovery" on page 706. 
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Entry and exit 
code 

Finally, when a constructor is called using a qualified-method 
identifier (that is, an object type identifier, followed by a period 
and a method identifier), a value of zero is passed in the VMT 
parameter. This indicates to the constructor that it should not 
initialize the VMT field of Self. 

For destructors, a 0 in the VMT parameter indicates a normal call, 
and a nonzero value indicates that the destructor was called using 
the extended syntax of the Dispose standard procedure. This 
causes the destructor to deallocate Self just before returning (the 
size of Selfis found by looking at the first word of Self's VMT). 

Each Pascal procedure and function begins and ends with 
standard entry and exit code. 
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conventions 

Exit procedures 

Chapter 20, Control issues 

This is the standard entry code: 

PUSH 
MOV 
SUB 

BP 
BP,SP 
SP,LocalSize 

iSave BP 
iSet up stack frame 
iAllocate locals (if any) 

LoealSize is the size of the local variables. The SUB instruction is 
present only if LoealSize isn't O. If the procedure's call model is 
near, the parameters start at BP + 4; if it's far, they start at BP + 6. 

This is the standard exit code: 

MOV 
pOP 
RET 

SP,BP 
BP 
ParamSize 

iDeallocate locals (if any) 
iRestore BP 
iRemove parameters and return 

ParamSize is the size of the parameters. The RET instruction is 
either a near or far return, depending on the routine's call model. 

Procedures and functions should preserve the BP, SP, SS, and DS 
registers. All other registers can be modified. 

By installing an exit procedure, you can gain control over a 
program's termination process. This is useful when you want to 
make sure specific actions are carried out before a program 
terminates; a typical example is updating and closing files. 

The ExitProe pointer variable allows you to install an exit 
procedure. The exit procedure is always called as a part of a 
program's termination, whether it's a normal termination, a 
termination through a call to Halt, or a termination due to a run­
time error. 

An exit procedure takes no parameters and must be compiled 
with a far procedure directive to force it to use the far call model. 

When implemented properly, an exit procedure actually becomes 
part of a chain of exit procedures. This chain makes it possible for 
units as well as programs to install exit procedures. Some units 
install an exit procedure as part of their initialization code and 
then rely on that specific procedure to be called to clean up after 
the unit. Closing files is such as example. The procedures on the 
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exit chain are executed in reverse order of installation. This 
ensures that the exit code of one unit isn't executed before the exit 
code of any units that depend upon it. 

To keep the exit chain intact, you must save the current contents 
of ExitProc before changing it to the address of your own exit 
procedure. Also, the first statement in your exit procedure must 
reinstall the saved value of ExitProc. The following program 
demonstrates a skeleton method of implementing an exit 
procedure: 

program Testexit; 
var 

ExitSave: Pointer; 

procedure MyExit; far; 
begin 

ExitProc := ExitSave; 

end; 

begin 
ExitSave := ExitProc; 
ExitProc := @MyExit; 

end. 

{ Always restore old vector first } 

On entry, the program saves the contents of ExitProc in ExitSave, 
and then installs the MyExit exit procedure. After having been 
called as part of the termination process, the first thing MyExit 
does is reinstall the previous exit procedure. 

The termination routine in the run-time library keeps calling exit 
procedures until ExitProc becomes nil. To avoid infinite loops, 
ExitProc is set to nil before every call, so the next exit procedure is 
called only if the current exit procequre assigns an address to 
ExitProc. If an error occurs in an exit procedure, it won't be called 
again. 

An exit procedure can learn the cause of termination by 
examining the ExitCode integer variable and the Error Addr pointer 
variable. 

In case of normal termination, ExitCode is zero and Error Addr is 
nil. In case of termination through a call to Halt, ExitCode contains 
the value passed to Halt, and ErrorAddr is nil. Finally, in case of 
termination due to a run-time error, ExitCodecontains the error 
code and ErrorAddr contains the address of the statement in error. 
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The last exit procedure (the one installed by the run-time library) 
closes the Input and Output files. If ErrorAddr isn't nil, it outputs a 
run-time error message. 

If you wish to present run-time error messages yourself, install an 
exit procedure that examines ErrorAddr and outputs a message if 
it isn't nil. In addition, before returning, make sure to set 
ErrorAddr to nil, so that the error isn't reported again by other exit 
procedures. 

Once the run-time library has called all exit procedures, it returns 
to DOS, passing the value stored in ExitCode as a return code. 

Interrupt handling 

Writing interrupt 
procedures 

Chapter 20, Control issues 

The Turbo Pascal run-time library and the code generated by the 
compiler are fully interruptible. Also, most of the run-time library 
is reentrant, which allows you to write interrupt service routines 
in Turbo Pascal. 

Declare interrupt procedures with the interrupt directive. Every 
interrupt procedure must specify the following procedure header 
(or a subset of it, as explained later): 

procedure IntHandler(Flags, es, IP, AX, BX, ex, DX, SI, DI, DS, ES, 
BP: Word}; 

interrupt; 
begin 

end; 

As you can see, all the registers are passed as pseudoparameters 
so you can use and modify them in your code. You can omit some 
or all of the parameters, starting with Flags and moving towards 
BP. It's an error to declare more parameters than are listed in the 
preceding example, or to omit a specific parameter without also 
omitting the ones before it (although no error is reported). For 
example, 

procedure IntHandler(DI, ES, BP: Word}; 
procedure IntHandler(SI, DI, DS, ES, BP: Word}; 

Invalid header } 
{ Valid header } 
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On entry, an interrupt procedure automatically saves all registers 
(regardless of the procedure header) and initializes the DS 
register: 

PUSH AX 
PUSH BX 
PUSH ex 
PUSH DX 
PUSH S1 
PUSH DI 

PUSH DS 
PUSH ES 
PUSH BP 
MOV BP,SP 
SUB SP,LocalSize 
MOV AX,SEG DATA 
MOV DS,AX 

Notice the lack of a STI instruction to enable additional interrupts. 
You should code this yourself (if required) using an inline 
statement. The exit code restores the registers and executes an 
interrupt-return instruction: 

MOV SP, BP 
pOP BP 
pOP ES 
pOP DS 
pOP D1 
pOP S1 
pOP DX 
POP ex 
pOP BX 
pOP AX 

1RET 

An interrupt procedure can modify its parameters. Changing the 
declared parameters will modify the corresponding regi?ter when 
the interrupt handler returns. This can be useful when you are 
using an interrupt handler as a user service, much like the DOS 
INT 21H services. 

Interrupt procedures that handle hardware-generated interrupts 
should not use any of Turbo Pascal's input and output or dynamic 
memory allocation routines,because they aren't reentrant. 
Likewise, no DOS functions can be used because DOS isn't 
reentrant. 
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Optimizing your code 

Turbo Pascal performs several different types of code optimi­
zations, ranging from constant folding and short-circuit Boolean 
expression evaluation, all the way up to smart linking. The 
following sections describe some of the types of optimizations 
performed and how you can benefit from them in your programs. 

Constant folding 

If the operand(s) of an operator are constants, Turbo Pascal 
evaluates the expression at compile time. For example, 

X := 3 + 4 * 2 

generates the same code as X . - 11, and 

S := 'In' + 'Out' 

generates the same code as S : = I InOut I. 

Likewise, if an operand of an Abs, Chr, Hi, Length, Lo, Odd, Ord, 
Pred, Ptr, Round, Succ, Swap, or Trunc function call is a constant, 
the function is evaluated at compile time. 

If an array index expression is a constant, the address of the 
·component is evaluated at compile time. For example, accessing 
Data[5, 5] is just as efficient as accessing a simple variable. 
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Constant merging 

Using the same string constant two or more times in a statement 
part generates only one copy of the constant. For example, two or 
more write ( 'Done') statements in the same statement part 
references the same copy of the string constant 'Done'. 

Short-circuit evaluation 

Turbo Pascal implements short-circuit Boolean evaluation, which 
means that evaluation of a Boolean expression stops as soon as 
the result of the entire expression becomes evident. This guaran­
tees minimum execution time and usually ~inimum code size. 
Short-circuit evaluation also makes possible the evaluation of 
constructs that would not otherwise be legal. For example, 

while (I <= Length{S)) and (S[I] <> ' ') do 
Inc (I) i 

while (P <> nil) and (pA.Value <> 5) do 
p := pA.Nexti 

In both cases, the second test isn't evaluated if the first test is 
False. 

The opposite of short-circuit evaluation is complete evaluation, 
which is selected through a {$B+} compiler directive. In this state, 
every operand of a Boolean expression is guaranteed to be 
evaluated. 

Constant parameters 

Read more about constant 
parameters on page 709. 
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Whenever possible, you should use constant parameters instead 
of value parameters. Constant parameters are at least as efficient 
as value parameters and, in many cases, more efficient. In 
particular, constant parameters generate less code and execute 
faster than value parameters for structured and string types. 

Constant parameters are more efficient than value parameters 
because the compiler doesn't have to generate copies of the actual 
parameters upon entry to procedures or functions. Value 
parameters have to be copied into local variables so that 
modifications made to the formal parameters won't modify the 
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actual parameters. Because cons~ant formal parameters can't be 
modified, the compiler has no need to generate copies of the 
actual parameters, and code and stack space is saved. 

Redundant pointer-load elimination 

In certain situations, Turbo Pascal's code generator can eliminate 
redundant pointer-load instructions, shrinking the size of the 
code and allowing for faster execution. When the code generator 
can guarantee that a particular pointer remains constant over a 
stretch of linear code (code with no jumps into it), and when that 
pointer is already loaded into a register pair (such as ES:DI), the 
code generator eliminates additional redundant pointer-load 
instructions in that block of code. 

A pointer is considered constant if it's obtained from a variable 
parameter (variable parameters are always passed as pointers) or 
from the variable reference of a with statement. Because of this, 
using with statements is often more efficient (but never less 
efficient) than writing the fully-qualified variable for each 
component reference. 

Constant set inlining 

When the right operand of the in operator is a set constant, the 
compiler generates the inclusion test using inline eMP 
instructions. Such inlined tests are more efficient than the code 
that would be generated by a corresponding boolean expression 
using relational operators. For example, this statement: 

if ((Ch >= 'A') and (Ch <= 'Z')) or 
((Ch >= 'a') and (Ch <= 'z')) then ... i 

is less readable and also less efficient than this: 

if Ch in [' A' .. ' Z', , a' .. ' z ' 1 then ... i 

Because constant folding applies to set constants as well as to 
constants of other types, it's possible to use const declarations 
without any loss of efficiency: 
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Small sets 

const 
Upper = [' A' .. ' Z ' ] ; 
Lower = ['a' .. 'z']; 
Alpha = Upper + Lower; 

Given these declarations, this if statement generates the same 
code as the previous if statement: 

if Ch in Alpha then ... 

The compiler generates very efficient code for operations on small 
sets. A small set is a set with a lower bound ordinal value in the 
range 0 .. 7 and an upper bound ordinal value in the range 0 .. 15. 
For example, the following TByteSet and TWordSet are both small 
sets. 

type 
TByteSet = set of 0 .. 7; 
TWordSet = set of O .. 15; 

Small set operations, such as union (+), difference (-), intersection 
(*), and inclusion tests (in) are generated inline using AND, OR, 
NOT, and TEST machine code instructions instead of calls to run­
time library routines. Likewise, the Include and Exclude standard 
procedures generate inline code when applied to small sets. 

Order of evaluation 
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As permitted by the Pascal standards, operands of an expression 
are frequently evaluated differently from the left to right order in 
which they are written. For example, the statement 

I := F(J) div G(J); 

where F and G are functions of type Integer, causes G to be eval­
uated before F, because this enables the compiler to produce 
better code. For this reason, it's important that an expression 
never depend on any specific order of evaluation of the embed­
ded functions. Referring to the previous example, if F must be 
called before G, use a temporary variable: 
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T := F(J); 

I : = T di v G (J) ; 

~ . As an exception to this rule, when short-circuit evaluation is 
enabled (the {$B-} state), Boolean operands grouped with and or 
or are always evaluated from left to right. 

Range checking 

Assignment of a constant to a variable and use of a constant as a 
value parameter is range-checked at compile time; no run-time 
range-check code is generated. For example, X : = 999, where X is 
of type Byte, causes a compile-time error. 

Shift instead of multiply or divide 

The operation X * C, where C is a constant and a power of 2, is 
coded using a SHL instruction. The operation X div C, where X is 
an unsigned integer (Byte or Word) and C is a constant and a 
power of 2, is coded using a SHR instruction. 

Likewise, when the size of an array's components is a power of 2, 
a SI1L instruction (not a MUL instruction) is used to scale the 
index expression. 

Automatic word alignment 

For more details, refer to 
Chapter 2, "Compiler 

directives," in the 
Programmer's Reference. 

By default, Turbo Pascal aligns all variables and typed constants 
larger than 1 byte on a machine-word boundary. On all 16-bit 
80x86 CPUs, word alignment means faster execution, because 
word-sized items on even addresses are accessed faster than 
words on odd addresses. 

Data alignment is controlled through the $A compiler directive. In 
the default {$A+} state, variables and typed constants are aligned 
as described above. In the {$A-} state, no alignment measures are 
taken. 
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Eliminating dead code 

Smart linking 

When compiling to memory, 
Turbo Pascal's smart linker is 
disabled. This explains why 

some programs become 
smaller when compiled to 

disk. 
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Statements that never execute don't generate any code. For 
example, these constructs don't generate any code: 

if False then 
statement 

while False do 
statement 

Turbo Pascal's built-in linker automatically removes unused code 
and data when building an .EXE file. Procedures, functions, vari- ' 
ables, and typed constants that are part of the compilation, but are 
never referenced, are removed from the .EXE file. The removal of 
unused code takes place on a per procedure basis; the removal of 
unused data takes place on a per declaration section basis. 

Consider the following program: 

program SmartLink; 

const 
H: array[O .. 15] of Char = '0123456789ABCDEF'; 

var 
I, J: Integer; 
X, Y: Real; 

var 
S: string[79]; 

var 
A: array[l .. 10000] of Integer; 

procedure P1 i 
begin 

A[l] := 1; 
end; 

procedure P2; 
begin 

I : = 1; 
end; 
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procedure P3j 

begin 
S .- 'Turbo Pascal'; 
P2; 

endj 

begin 
P3; 

end. 

The main program calls P3, which calls P2, so both P2 and P3 are 
included in the .EXE file. Because P2 references the first var 
declaration section, and P3 references the second var declaration, 
I, /, X, Y, and S are also included in the .EXE file. No references 
are made to Pl, however, and none of the included procedures 
reference H and A, so these objects are removed. 

Smart linking is especially valuable in connection with units that 
implement procedure/ function libraries. An example of such a 
unit is the Dos standard unit: It contains a number of procedures 
and functions, all of which are seldom used by the same program. 
If a program uses only one or two procedures from Dos, then only 
these procedures are included in the final.EXE file, and the re­
maining ones are removed, greatly reducing the size of the .EXE 
file. 
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The built-in assembler 

Turbo Pascal's built-in assembler allows you to write 8086/8087 
and 80286/80287 assembler code directly inside your Pascal 
programs. Of course, you can still convert assembler instructions 
to machine code manually for use in inline statements, or link in 
.OBJ files that contain external procedures and functions when 
you want to mix Pascal and assembler. 

The built-in assembler implements a large subset of the syntax 
supported by Turbo Assembler and Microsoft's Macro Assembler. 
The built-in assembler supports all 8086/8087 and 80286/80287 
opcodes, and all but a few of Turbo Assembler's expression 
operators. 

Except for DB, DW, and DD (define byte, word, and double 
word), none of Turbo Assembler's directives, such as EQU, PROC, 
STRUC, SEGMENT, and MACRO, are supported by the built-in 
assembler. Operations implemented through Turbo Assembler 
directives, however, are largely matched by corresponding Turbo 
Pascal constructs. For example, most EQU directives correspond 
to const, var, and type declarations in Turbo Pascal, the PROC 
directive corresponds to procedure and function declarations, and 
the STRUC directive corresponds to Turbo Pascal record types. In 
fact, Turbo Pascal's built-in assembler can be thought of as an 
assembler language compiler that uses Pascal syntax for all 
declarations. 
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The asm statement 

Register use 

The built-in assembler is accessed through asm statements. This is 
the syntax of an asm statement: 

asm AsmStatement [ Separator AsmStatement lend 

AsmStatement is an assembler statement and Separator is a 
semicolon, a new-line, or a Pascal comment. 

Multiple assembler statements can be placed on one line if they 
are separated by semicolons. A semicolon isn't required between 
two assembler statements if the statements are on separate lines. 
A semicolon doesn't indicate that the rest of the line is a com­
ment-comments must be written in Pascal style using { and} or 
(* and *). 

In general, the rules of register use in an asm statement are the 
same as those of an external procedure or function. An asm state­
ment must preserve the BP, SP, SS, and DS registers, but can 
freely modify the AX, BX, CX, DX, SI, DI, ES, and Flags registers. 
On entry to an asm statement, BP points to the current stack 
frame, SP points to the top of the stack, SS contains the segment 
address of the stack segment, and DS contains the segment 
address of the data segment. Except for BP, SP, SS, and DS, an 
8sm statement can assume nothing about register contents on 
entry to the statement. 

Assembler statement syntax 
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This is the syntax of an assembler statement: 

[ Label ":" 1 < Prefix> [ Opcode [ Operand < "," Operand> 1 1 

Label is a label identifier, Prefix is an assembler prefix opcode 
(operation code), Opcode is an assembler instruction opcode or 
directive, and Operand is an assembler expression. 

Comments are allowed between assembler statements, but not 
within them. For example, this is allowed: 
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Labels 
Only the first 32 characters of 
an identifier are significant in 

the built-in assembler. 

Instruction 
opcodes 

asm 
MOV AX,l {Initial value} 
MOV CX,lOO {Count} 

end; 

but this is an error: 

asm 
MOV {Initial value} AX,l; 
MOV CX, {Count} 100 -

end; 

Labels are defined in assembler as they are in Pascal-by writing 
a label identifier and a colon before a statement. And as they are 
in Pascal, labels defined in assembler must be declared in a label 
declaration part in the block containing the asm statement. There 
is one exception to this rule: local labels. 

Local labels are labels that start with an at-sign (@). Because an 
at-sign can't be part of a Pascal identifier, such local labels are 
automatically restricted to use within asm statements. A local 
label is known only within the asm statement that defines it (that 
is, the scope of a local label extends from the asm keyword to the 
end keyword of the asm statement that contains it). 

Unlike a normal label, a local label doesn't have to be declared in 
a label declaration part before it's used. 

The exact composition of a local label identifier is an at-sign (@) 
followed by one or more letters (A .. Z), digits (0 .. 9), underscores 
(_), or at-signs. As with all labels, the identifier is followed by a 
colon (:). 

The built-in assembler supports all 8086/8087 and 80286/80287 
instruction opcodes. 8087 opcodes are available only in the {$N+} 
state (numeric processor enabled), 80286 opcodes are available 
only in the {$G+} state (80286 code generation enabled), and 80287 
opcodes are available only in the {$G+,N+} state. 

For a complete description of each instruction, refer to your 80x86 
and 80x87 reference manuals. 
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RET instruction sizing The RET instruction opcode generates a near return or a far return 
machine code instruction depending on the call model of the 
current procedure or function. 

procedure NearProc; near; 
begin 

asm 
RET {Generates a near return } 

end; 
end; 

procedure FarProc; far; 
begin 

asm 
RET {Generates a far return } 

end; 
end; 

On the other hand, the RETN and RETF instructions always 
generate a near return and a far return, regardless of the call 
model of the current procedure or function. 

Automatic jump sizing Unless otherwise directed, the built-in assembler optimizes jump 
instructions by automatically selecting the shortest, and therefore 
most efficient form of a jump instruction. This automatic jump 
sizing applies to the unconditional jump instruction OMP), and all 
conditional jump instructions, when the target is a label (not a 
procedure or function). 
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For an unconditional jump instruction OMP), the built-in 
assembler generates a short jump (one byte opcode followed by a 
one byte displacement) if the distance to the target label is within 
-128 to 127 bytes; otherwise a near jump (one byte opcode 
followed by a two byte displacement) is generated. 

For a conditional jump instruction, a short jump (1 byte opcode 
followed by a 1 byte displacement) is generated if the distance to 
the target label is within -128 to 127 bytes; otherwise, the built-in 
assembler generates a short jump with the inverse condition, 
which jumps over a near jump to the target label (5 bytes in total). 
For example, the assembler statement 

JC Stop 

where Stop isn't within reach of a short jump is converted to a 
machine code sequence tha,t corresponds to this: 
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Assembler 

JNC Skip 
JMP Stop 
Skip: 

Jumps to the entry points of procedures and functions are always 
either near or far, but never short, and conditional jumps to 
procedures and functions are not allowed. You can force the 
built-in assembler to generate an unconditional near jump or far 
jump to a label by using a NEAR PTR or FAR PTR construct. For 
example, the assembler statements 

JMP NEAR PTR Stop 
JMP FAR PTR Stop 

always generate a near jump and a far jump, respectively, even if 
Stop is a label within reach of a short jump. 

directives Turbo Pascal's built-in assembler supports three assembler 
directives: DB (define byte), DW (define word), and DD (define 
double word). They each generate data corresponding to the 
comma-separated operands that follow the directive. 

The DB directive generates a sequence of bytes. Each operand can 
be a constant expression with a value between -128 and 255, or a 
character string of any length. Constant expressions generate one 
byte of code, and strings generate a sequence of bytes with values 
corresponding to the ASCII code of each character. 

The DW directive generates a sequence of words. Each operand 
can be a constant expression with a value between -32,768 and 
65,535, or an address expression. For an address expression, the 
built-in assembler generates a near pointer, that is, a word that 
contains the offset part of the address. 

The DD directive generates a sequence of double words. Each 
operand can be a constant expression with a value between 
-2,147,483,648 and 4,294,967,295, or an address expression. For an 
address expression, the built-in assembler generates a far pointer, 
that is, a word that contains the offset part of the address, 
followed by a word that contains the segment part of the address. 

The data generated by the DB, DW, and DD directives is always 
stored in the code segment, just like the code generated by other 
built-in assembler statements. To generate uninitialized or initial­
ized data in the data segment, you should use Pascal var or canst 
declarations. 
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Some examples of DB, DW, and DD directives follow: 

asm 
DB OFFH { One byte } 
DB 0,99 { Two bytes } 
DB 'A' { Ord( 'A') } 
DB 'Hello world ... ' ,ODH,OAH String followed by CR/LF } 
DB 12, "Turbo Pascal" { Pascal style string } 
DW OFFFFH { One word } 
DW 0,9999 { Two words } 

DW 'A' Same as DB 'A',O } 
DW 'BA' Same as DB 'A', 'B' } 
DW MyVar { Offset of MyVar } 
DW MyProc { Offset of MyProc } 
DD OFFFFFFFFH { One double-word } 
DD 0,999999999 { Two double-words } 
DD 'A' Same as DB 'A' ,0,0,0 } 
DD 'DCBA' Same as DB 'A', 'B', 'C', 'D' } 
DD MyVar { Pointer to MyVar } 
DD MyProc { Pointer to MyProc } 

end; 

In Turbo Assembler, when an identifier precedes a DB, DW, or DD 
directive, it causes the declaration of a byte, word, or double­
word sized variable at the location of the directive. For example, 
Turbo Assembler allows the following: 

ByteVar DB 
WordVar DW 

MOV AL,ByteVar 
MOV BX,WordVar 

The built-in assembler doesn't support such variable declarations. 
In Turbo Pascal, the only kind of symbol that can be defined in an 
built-in assembler statement is a label. All variables must be de­
clared using Pascal syntax, and the preceding construct corre­
sponds to this: 

var 
ByteVar: Byte; 
WordVar: Word; 

asm 
MOV AL,ByteVar 
MOV BX,WordVar 

end; 
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Operands 

Table 22.1 
Built-in assembler reseNed 

words 

Built-in assembler operands are expressions that consist of a 
combination of constants, registers, symbols, and operators. 
Although built-in assembler expressions are built using the same 
basic principles as Pascal expressions, there are a number of 
important differences, as will be explained later in this chapter. 

Within operands, the following reserved words have a predefined 
meaning to the built-in assembler: 

AH CS LOW SI 
AL CX MOD SP 
AND DH NEAR SS 
AX DI NOT ST 
BH DL OFFSET TBYTE 
BL DS OR TYPE 
BP DWORD PTR WORD 
BX DX QWORD XOR 
BYTE ES SEG 
CH FAR SHL 
CL HIGH SHR 

The reserved words always take precedence over user-defined 
identifiers. For example, the code fragment 

var 
ch: Char; 

asm 
MOV CH, 1 

end; 

loads 1 into the CH register, not into the CH variable. To access a 
user-defined symbol with the same name as a reserved word, you 
must use the ampersand (&) identifier override operator: 

asm 
MOV &ch, 1 

end; 

It's strongly suggested that you avoid user-defined identifiers 
with the same names as built-in assembler reserved words, 
because such name confusion can easily lead to obscure and 
hard -to-find bugs. . 
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Expressions 

Differences 
between Pascal 

and Assembler 
expressions 
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The built-in assembler evaluates all expressions as 32-bit integer 
values; it doesn't support floating-point and string values, except 
string constants. 

Built-in assembler expressions are built from expression elements 
and operators, and each expression has an associated expression 
class and expression type. These concepts are explained in the 
following sections. 

The most important difference between Pascal expressions and 
built-in assembler expressions is that all built-in assembler expres­
sions must resolve to a constant value, a value that can be 
computed at compile time. For example, given these declarations: 

const 
X = 10; 
Y = 20; 

var 
Z: Integer; 

the following is a valid built-in assembler statement: 

asm 
MOV Z,X+Y 

end; 

Because both X and Yare constants, the expression X + Y is 
merely a more convenient way of writing the constant 30, and the 
resulting instruction becomes a move immediate of the value 30 
into the word-sized variable Z. But if you change X and Y to be 
variables, 

var 
x, Y: Integer; 

the built-in assembler can no longer compute the value of X + Yat 
compile time. The correct built-in assembler construct to move the 
sum of X and Y into Z is this: 

asm 
MOV l\t.,X 
ADD l\t.,Y 

MOV Z,l\t. 

end; 
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Expression 
elements 

Constants 

Another important difference between Pascal and built-in 
assembler expressions is the way variables are interpreted. In a 
Pascal expression, a reference to a variable is interpreted as the 
contents of the variable, but in an built-in assembler expression, a 
variable reference denotes the address of the variable. For example, 
in Pascal, the expression X + 4, where X is a variable, means the 
contents of X plus 4, whereas in the built-in assembler it means the 
contents of the word at an address four bytes higher than the 
address of X. So, even though you're allowed to write 

asm 
MOV AX,X+4 

end; 

the code doesn't load the value of X plus 4 into AX, but rather it 
loads the value of a word stored four bytes beyond X. The correct 
way to add 4 to the contents of X is: 

asm 
MOV AX,X 
ADD AX,4 

end; 

The basic elements of an expression are constants, registers, and 
symbols. 

The built-in assembler supports two types of constants: numeric 
constants and string constants. 

Numeric constants 

Numeric constants must be integers, and their values must be 
between -2,147,483,648 and 4,294,967,295. 

By default, numeric constants use decimal (base 10) notation, but 
the built-in assembler supports binary (base 2), octal (base 8), and 
hexadecimal (base 16) notations as well. Binary notation is se­
lected by writing a B after the number, octal notation is selected 
by writing a letter 0 after the number, and hexadecimal notation 
is selected by writing an H after the number or a $ before the 
number. 
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~ The B, 0, and H suffixes aren't supported in Pascal expressions. 
Pascal expressions allow only decimal notation (the default) and 
hexadecimal notation (using a $ prefix). 

Numeric constants must start with one of the digits 0 through 9 or 
a $ character; therefore, when you write a hexadecimal constant 
using the H suffix, an extra zero in front of the number is required 
if the first significant digit is one of the hexadecimal digits A 
through F. For example, OBAD4H and $BAD4 are hexadecimal 
constants, but BAP4H is an identifier because it starts with a letter 
and not a digit. 

String constants 

String constants must be enclosed in single or double quotes. Two 
consecutive quotes of the same type as the enclosing quotes count 
as only one character. Here are some examples of string constants: 

'Z' 

'Turbo Pascal' 
"That's all folks" 
'"That"s all folks," he said.' 
'100' 

Notice in the fourth string the use of two consecutive single 
quotes to denote one single quote character. 

String constants of any length are allowed in DB directives, and 
cause allocation of a sequence of bytes containing the ASCII 
values of the characters in the string. In all other cases, a string 
constant can be no longer than four characters, and denotes a 
numeric value which can participate in an expression. The 
numeric value of a string constant is calculated as 

Ord(Ch1) + Ord(Ch2) shl 8 + Ord(Ch3) shl 16 + Ord(Ch4) shl 24 

where Chl is the rightmost (last) character and Ch4 is the leftmost 
(first) character. If the string is shorter than four characters, the 
leftmost (first) character(s) are assumed to be zero. Here are some 
examples of string constants and their corresponding numeric 
values: 
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Table 22.2 
String examples and their 

values 

String 

'a' 
'ba' 
'eba' 
'deba' 
'a' 
, a' 
'a'*2 
'a'-'A' 
not 'a' 

Value 

0OOOO061H 
00006261H 
00636261H 
64636261H 
00OO6120H 
20202061H 
OOOOOOE2H 
00OOO020H 
FFFFFF9EH 

Registers The following reserved symbols denote CPU registers: 

Table 22.3 
CPU registers 16-bit general purpose AX BX ex DX 

8-bit low registers AL BL CL DL 
8-bit high registers AH BH CH DH 
16-bit pointer or index 5P BP 51 DI 
16-bit segment registers C5 D5 55 E5 
8087 register staek ST 

When an operand consists solely of a register name, it's called a 
register operand. All registers can be used as register operands. In 
addition, some registers can be used in other contexts. 

The base registers (BX and BP) and the index registers (SI and DI) 
can be written within square brackets to indicate indexing.-Valid 
base/index register combinations are [BX], [BP], lSI], [DI], 
[BX+SI], [BX+DI], [BP+SI], and [BP+DI]. 

The segment registers (ES, CS, SS, and DS) can be used in con­
junction with the colon (:) segment override operator to indicate a 
different segment than the one the processor selects by default. 

The symbol ST denotes the topmost register on the 8087 floating­
point register stack. Each of the eight floating-point registers can 
be referred to using ST(x), where x is a constant between 0 and 7 
indicating the distance from the top of the register stack. 

Symbols The built-in assembler allows you to access almost all Pascal 
symbols in assembler expressions, including labels, constants, 
types, variables, procedures, and functions. In addition, the built­
in assembler implements the following special symbols: 

@Code @Data @Result 
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The @Code and @Data symbols represent the current code and 
data segments. They should only be used in conjunction with the 
SEG operator: 

asm 
MOV AX,SEG @Data 
MOV DS,AX 

end; 

The @Result symbol represents the function result variable within 
the statement part of a function. For example, in this function: 

function Sum (X, Y: Integer): Integer; 
begin 

Sum := X + Y; 
end; 

the statement that assigns a function result value to Sum would 
use the @Result variable if it was written in built-in assembler: 

function Sum(X, Y: Integer): Integer; 
begin 

asm 
MOV AX,X 
ADD AX,Y 
MOV @Result,AX 

end; 
end; 

The following symbols can't be used in built-in assembler 
expressions: 

• Standard procedures and functions (for example, WriteLn, Chr) 

• The Mem, MemW, MemL, Port, and PortW special arrays 

• String, floating-point, and set constants 

• Procedures and functions declared with the inline directive 

• Labels that aren't declared in the current block 

• The @Result symbol outside a function 

Table 22.4 summarizes the value, class, and type of the different 
kinds of symbols that can be used in built-in assembler 
expressions. (Expression classes and types are described in a 
following section.) 
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Table 22.4 
Values, classes, and types of 

symbols 

Symbol Value Class Type 

Label Address of label Memory SHORT 
Constant Value of constant Immediate 0 
Type 0 Memory Size of type 
Field Offset of field Memory Size of type 
Variable Address of variable Memory Size of type 
Procedure Address of procedure Memory NEAR or FAR 
Function Address of function Memory NEAR or FAR 
Unit 0 Immediate 0 
@Code Code segment address Memory OFFFOH 
@Data Data segment address Memory OFFFOH 
@Result Result var offset Memory Size of type 

Local variables (variables declared in procedures and functions) 
are always allocated on the stack and accessed relative to SS:BP, 
and the value of a local variable symbol is its signed offset from 
SS:BP. The assembler automatically adds [BP] in references to 
local variables. For example, given these declarations, 

procedure Test; 
var 

Count: Integer; 

the instruction 

asm 
MOV AX, Count 

end; 

assembles into MOV AX, [BP-2l. 

The built-in assembler always treats a var parameter as a 32-bit 
pointer, and the size of a var parameter is always 4 (the size of a 
32-bit pointer). In Pascal, the syntax for accessing a var parameter 
and a value parameter is the same-this isn't the case in code you 
write for the built-in assembler. Because var parameters are really 
pointers, you have to treat them as such. So, to access the contents 
of a var parameter, you first have to load the 32-bit pointer and 
then access the location it points to. For example, if the X and Y 
parameters of the above function Sum were var parameters, the 
code would look like this: 

function Sum(var X, Y: Integer): Integer; 
begin 

asm 
LES 
MOV 
LES 

BX,X 
AX,ES: [BXj 
BX,Y 
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ADD AY., ES: [BX] 
MOV @Result,AX 

end; 
end; 

Some symbols, such as record types and variables, have a scope 
that can be accessed using the period (.) structure member 
selector operator. For example, given these declarations: 

type 
TPoint = record 

X, Y: Integer; 
end; 
TRect = record 

A, B: TPoint; 
end; 

var 
P: TPoint; 
R: TRect; 

the following constructs can be used to access fields in the P and R 
variables: 

asm 
MOV AY.,P.X 
MOV DX,P.Y 
MOV CX,R.A.X 
MOV BX,R.B.Y 

end; 

A type identifier can be used to construct variables on the fly. 
Each of the following instructions generates the same machine 
code, which loads the contents of ES:[DI+4] into AX: 

asm 
MOV AX, (TRect PTR ES: [DI]) .B.X 
MOV AX,TRect(ES: [DI]) .B.X 
MOV AX,ES:TRect[DI] .B.X 
MOV AY.,TRect[ES:DI] .B.X 
MOV AX,ES: [DI] .TRect.B.X 

end; 

A scope is provided by type, field, and variable symbols of a 
record or object type. In addition, a unit identifier opens the scope 
of a particular unit, just like a fully qualified identifier in Pascal. 
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Expression classes 
The built-in assembler divides expressions into three classes: 
registers, memory references, and immediate values. 

An expression that consists solely of a register name is a register 
expression. Examples of register expressions are AX, CL, DI, and 
ES. Used as operands, register expressions direct the assembler to 
generate instructions that operate on the CPU registers. 

Expressions that denote memory locations are memory refer­
ences; Pascal's labels, variables, typed constants, procedures, and 
functions belong to this category. 

Expressions that aren't registers and aren't associated with 
memory locations are immediate values; this group includes 
Pascal's untyped constants and type identifiers. 

Immediate values and memory references cause different code to 
be generated when used as operands. For example, 

const 
Start = 10; 

var 
Count: Integer; 

asm 
MOV 
MOV 
MOV 
MOV 

end; 

AX, Start 
BX,Count 
CX, [Start] 
DX,OFFSET Count 

{ MOV AX,xxxx } 
{ MOV BX, [xxxx] 
{ MOV CX, [xxxx] 
{ MOV DX,xxxx } 

Because Start is an immediate value, the first MOV is assembled 
into a move immediate instruction. The second MOV, however, is 
translated into a move memory instruction, as Count is a memory 
reference. In the third MOV, the square brackets operator is used 
to convert Start into a memory reference (in this case, the word at 
offset 10 in the data segment), and in the fourth MOV, the 
OFFSET operator is used to convert Count into an immediate 
value (the offset of Count in the data segment). 

As you can see, the square brackets and the OFFSET operators 
complement each other. In terms of the resulting machine code, 
the following asm statement is identical to the first two lines of 
the previous asm statement: 
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asm 
MOV AX,OFFSET [Start] 
MOV BX, [OFFSET Count] 

end; 

Memory references and immediate values are further classified as 
either relocatable expressions or absolute expressions. A relocatable 
expression denotes a value that requires relocation at link time, 
and an absolute expression denotes a value that requires no such 
relocation. Typically, an expression that refers to a label, variable, 
procedure, or function is relocatable, and an expression that 
operates solely on constants is absolute. 

Relocation is the process by which the linker assigns absolute 
addresses to symbols. At compile time, the compiler doesn't 
know the final address of a label, variable, procedure, or function; 
it doesn't become known until link time, when the linker assigns a 
specific absolute address to the symbol. 

The built-in assembler allows you to carry out any operation on 
an absolute value, but it restricts operations on relocatable values 
to addition and subtraction of constants. 

Every built-in assembler expression has an associated type-or 
more correctly, an associated size, because the built-in assembler 
regards the type of an expression simply as the size of its memory 
location. For example, the type (size) of an Integer variable is two, 
because it occupies 2 bytes. 

The built-in assembler performs type checking whenever possible, 
so in the instructions 

var 
QuitFlag: Boolean; 
OutBufPtr: Word; 

asm 
MOV AL,QuitFlag 
MOV BX,OutBufPtr 

end; 

the built-in assembler checks that the size of QuitFlag is one (a 
byte), and that the size of OutBufPtr is two (a word). An error 
results if the type check fails. For example, this isn't allowed: 
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asm 
MOV DL,OutBufPtr 

end; 

The problem is DL is a byte-sized register and OutBufPtr is a 
word. The type of a memory reference can be changed through a 
typecast; these are correct ways of writing the previous 
instruction: 

asm 
MOV DL,BYTE PTR OutBufPtr 
MOV DL, Byte (OutBufPtr) 
MOV DL,OutBufPtr.Byte 

end; 

all of which refer to the first (least significant) byte of the 
OutBufPtr variable. 

In some cases, a memory reference is untyped, that is, it has no 
associated type. One example is an immediate value enclosed in 
square brackets: 

asm 
MOV AL, [IOOR] 
MOV BX, [IOOR] 

end; 

The built-in assembler permits both of these instructions, because 
the expression [100H] has nq associated type-it just means "the 
contents of address 100H in the data segment," and the type can 
be determined from the first operand (byte for AL, word for BX). 
In cases where the type can't be determined from another 
operand, the built-in assembler requires an explicit typecast: 

asm 
INC BYTE PTR [IOOR] 
IMUL WORD PTR [IOOR] 

end; 

Table 22.5 summarizes the predefined type symbols that the 
built-in assembler provides in addition to any currently declared 
Pascal types. 
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Table 22.5 
Predefined type symbols 

Expression 
operators 

Table 22.6 
Summary of built-in 

asssembler expression 
operators 

Built-in assembler operator 
precedence is different from 

Pascal. For example, in a 
built-in assembler expression, 
the AND operator has lower 

precedence than the plus 
(+) and minus (-) operators, 

whereas in a Pascal 
expression, it has higher 

precedence. 
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Symbol 

BYTE 
WORD 
DWORD 
aWORD 
TBYTE 
NEAR 
FAR 

Type 

1 
2 
4 
8 
10 
OFFFEH 
OFFFFH 

Notice in particular the NEAR and FAR pseudotypes, which are 
used by procedure and function symbols to indicate their call 
model. You can use NEAR and FAR in typecasts just like other 
symbols. For example, if FarProc is a FAR procedure, 

procedure FarProc; far; 

and if you are writing built-in assembler code in the same module 
as FarProc, you can use the more efficient NEAR call instruction to 
call it: 

asm 
PUSH CS 
CALL NEAR PTR FarProc 

end; 

The built-in assembler provides a variety of operators, divided 
into 12 classes of precedence. Table 22.6 lists the built-in 
assembler's expression operators in decreasing order of 
precedence. 

Operator(s) 

& 

0, [], • 
HIGH, LOW 

+,-

OFFSE~SEG,TYPE,PTR, 
*, I, MOD, SHL, SHR 

+,-

NOT, AND, OR, XOR 

Comments 

Identifier override operator 

Structure member selector 

Unary operators 

Segment override operator 

Binary addition/ subtraction 
operators 

Bitwise operators 
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Table 22.7: Definitions of built-in assembler expression operators 

Operator 

& 

( ... ) 

[ ... ] 

HIGH 

LOW 

+ 

OFFSET 

SEG 

TYPE 

PTR 

* 

Description 

Identifier override. The identifier immediately following the ampersand is treated as a 
user-defined symbol, even if the spelling is the same as a built-in assembler reserved 
symbol. 

Subexpression. Expressions within parentheses are evaluated completely prior to being 
treated as a single expression element. Another expression can optionally precede the 
expression within the parentheses; the result in this case becomes the sum of the values of 
the two expressions, with the type of the first expression. 

Memory reference. The expression within brackets is evaluated completely prior to being 
treated as a single expression element. The expression within brackets can be combined 
with the BX, BP, sr, or Dr registers using the plus (+) operator, to indicate CPU register 
indexing. Another expression can optionally precede the expression within the brackets; the. 
result in this case becomes the sum of the values of the two expressions, with the type of the 
first expression. The result is always a memory reference. 

Structure member selector. The result is the sum of the expression before the period and 
the expression after the period, with the type of the expression after the period. Symbols 
belonging to the scope identified by the expression before the period can be accessed in the 
expression after the period. 

Returns the high-order 8 bits of the word-sized expression following the operator. The 
expression must be an absolute immediate value. 

Returns the low-order 8 bits of the word-sized expression following the operator. The 
expression must be an absolute immediate value. 

Unary plus. Returns the expression following the plus with no changes. The expression 
must be an absolute immediate value. 

Unary minus. Returns the negated value of the expression following the minus. The 
expression must be an absolute immediate value. 

Segment override. Instructs the assembler that the expression after the colon belongs to the 
segment given by the segment register name (CS, DS, SS, or ES) before the colon. The result 
is a memory reference with the value of the expression after the colon. When a segment 
override is used in an instruction operand, the instruction will be prefixed by an 
appropriate segment override prefix instruction to ensure that the indicated segment is 
selected. 

Returns the offset part (low-order word) of the expression following the operator. The result 
is an immediate value. 

Returns the segment part (high-order word) of the expression following the operator. The 
result is an immediate value. 

Returns the type (size in bytes) of the expression following the operator. The type of an 
immediate value is O. ' 

Typecast operator. The result is a memory reference with the value of the expression 
following the operator and the type of the expression in front of the operator. 

Multiplication. Both expressions must be absolute immediate values, and the result is an 
absolute immediate value. 
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Table 22.7: Definitions of built-in assembler expression operators (continued) 

Integer division. Both expressions must be absolute immediate values, and the result is an 
absolute immediate value. 

MOD Remainder after integer division. Both expressions must be absolute immediate values, and 
the result is an absolute immediate value. 

SHL Logical shift left. Both expressions must be absolute immediate values, and the result is an 
absolute immediate value. 

SHR Logical shift right. Both expressions must be absolute immediate values, and the result is 
an absolute immediate value. 

+ Addition. The expressions can be immediate values or memory references, but only one of 
the expressions can be a relocatable value. If one of the expressions is a relocatable value, 
the result is also a relocatable value. If either of the expressions are memory references, the 
result is also a memory reference. 

Subtraction. The first expression can have any class, but the second expression must be an 
absolute immediate value. The result has the same class as the first expression. 

NOT Bitwise negation. The expression must be an absolute immediate value, and the result is an 
absolute immediate value. 

AND Bitwise AND. Both expressions must be absolute immediate values, and the result is an 
absolute immediate value. 

OR Bitwise OR. Both expressions must be absolute immediate values, and the result is an 
absolute immediate value. 

XOR Bitwise exclusive OR. Both expressions must be absolute immediate values, and the result 
is an absolute immediate value. 

Assembler procedures and functions 

274 

So far, every asm ... end construct you've seen has been a 
statement within a normal begin ... end statement part. Turbo 
Pascal's assembler directive allows you to write complete 
procedures and functions in built-in assembler, without the need 
for a begin ... end statement part. Here's an example of an 
assembler function: 

function LongMul(X, Y: Integer): Longint; assembler; 
asm 

MOV AX,X 
IMUL Y 

end; 

The assembler directive causes Turbo Pascal to perform a number 
of code generation optimizations: 
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• The compiler doesn't generate code to copy value parameters 
into local variables. This affects all string-type value param­
eters, and other value parameters whose size isn't I, 2, or 4 
bytes. Within the procedure or function, such parameters must 
be treated as if they were var parameters. 

• The compiler doesn't allocate a function result variable, and a 
reference to the @Result symbol is an error. String functions, 
however, are an exception to this rule-they always have a 
@Result pointer that is allocated by the caller. 

• The compiler generates no stack frame for procedures and 
functions that aren't nested and have no parameters and no 
local variables. 

• The automatically generated entry and exit code for an 
assembler procedure or function looks like this: 

PUSH BP jPresent if Locals <> a or Params <> 0 
MOV BP,SP jPresent if Locals <> a or Params <> 0 
SUB SP,Locals jPresent if Locals <> a 

MOV SP,BP jPresent if Locals <> a 
POP BP jPresent if Locals <> a or Params <> a 
RET Params jAlways present 

• Locals is the size of the local variables, and Params is the size of 
the parameters. If both Locals and Params are zero, there is no 
entry code, and the exit code consists simply of a RET 
instruction. 

Functions using the assembler directive must return their results 
as follows: 

• Ordinal-type function results (integer, boolean, enumerated 
types, and Char) are returned in AL (8-bit values), AX (16-bit 
values), or DX:AX (32-bit values). 

• Real-type function results (type Real) are returned in DX:BX:AX. 

• 8087-type function results (type Single, Double, Extended, and 
Comp) are returned in ST(O) on the 8087 coprocessor's register 
stack. 

• Pointer-type function results are returned in DX:AX. 

• String-type function results are returned in the temporary 
location pointed to by the @Result function result symbol. 

The assembler directive is in many ways comparable to the 
external directive, and assembler procedures and functions must 
obey the same rules as external procedures and functions. The 
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following examples demonstrate some of the differences between 
asm statements in ordinary functions and assembler functions. 
The first example uses an asm statement in an ordinary function 
to convert a string to upper case. Notice that the value parameter 
Str in this case refers to a local variable, because the compiler 
automatically generates entry code that copies the actual 
parameter into local storage. 

function UpperCase (Str: String): String; 
begin 

asm 
CLD 
LEA SI,Str 
LES DI,@Result 
SEGSS LODSB 
STOSB 
XOR AH,AH 
XCHG AX,CX 
JCXZ @3 

@l: 
SEGSS LODSB 
CMP AL,'a' 
JB @2 
CMP AL, 'z' 
JA @2 
SUB AL,20H 

@2: 
STOSB 
LOOP @1 

@3: 
end; 

end; 

The second example is an assembler version of the UpperCase 
function. In this case, Str isn't copied into local storage, and the 
function must treat Str as a var parameter. 

function UpperCase (Str: String) : String; assembler; 
asm 

PUSH DS 
CLD 
LDS SI,Str 
LES DI,@Result 
LODSB 
STOSB 
XOR AH,AH 
XCHG AX,CX 
JCXZ @3 
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@1: 
LODSB 
CMP AL,'a' 
JB @2 
CMP AL,' z' 
JA @2 
SUB AL,20H 

@2 : 
STOSB 
LOOP @1 

@3: 
POP DS 

end; 
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c H A p T E R 

23 

Linking assembler code 

Procedures and functions written in assembly language can be 
linked with Turbo Pascal programs or units using the $L compiler 
directive. The assembly language source file must be assembled 
into an object file (extension .OBJ) using an assembler like Turbo 
Assembler. Multiple object files can be linked with a program or 
unit through multiple $L directives. 

Procedures and functions written in assembly language must be 
declared as external in the Pascal program or unit. For example, 

function LoCase(Ch: Char): Char; external; 

In the corresponding assembly language source file, all 
procedures and functions must be placed in a segment named 
CODE or CSEG, or in a segment whose name ends in _TEXT. The 
names of the external procedures and functions must appear in 
PUBLIC directives. 

You must ensure that an assembly language procedure or 
function matches its Pascal definition with respect to call model 
(near or far), number of parameters, types of parameters, and 
result type. 

An assembly language source file can declare initialized variables 
in a segment named CaNST or in a segment whose name ends in 
_DATA. It can declare uninitialized variables in a segment named 
DATA or DSEG, or in a segment whose name ends in _BSS. Such 
variables are private to the assembly language source file and 
can't be referenced from the Pascal program or unit. However, 
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they reside in the same segment as the Pascal globals, and can be 
accessed through the DS segment register. 

All procedures, functions, and variables declared in the Pascal 
program or unit, and the ones declared in the interface section of 
the used units, can be referenced from the assembly language 
source file through EXTRN directives. Again, it's up to you to 
supply the correct type in the EXTRN definition. 

When an object file appears in a $L directive, Turbo Pascal 
converts the file from the Intel relocatable object module format 
(.OBJ) to its own internal relocatable format. This conversion is 
possible only if certain rules are observed: 

• All procedures and functions must be placed in a segment 
named CODE or CSEG, or in a segment with a name that ends 
in _TEXT. All initialized private variables must be placed in a 
segment named CONST, or in a segment with a name that ends 
in _DATA. All uninitialized private variables must be placed in 
a segment named DATA or DSEG, or in a segment with a name 
that ends in _BSS. All other segments are ignored, and so are 
GROUP directives. The segment definitions can specify BYTE 
or WORD alignment, but when linked, code segments are 
always byte aligned, and data segments are always word 
aligned. The segment definitions can optionally specify PUBLIC 
and a class name, both of which are ignored. 

• Turbo Pascal ignores any data for segments other than the code 
segment (CODE, CSEG, or xxxx_TEXT) and the initialized data 
segment (CaNST or xxxx_DATA). So, when declaring variables 
in the uninitialized data segment (DATA, DSEG, or xxxx_BSS), 
always use a question mark (?) to specify the value, for 
instance: 

Count DW ? 
Buffer DB 128 DUP(?) 

• Byte-sized references to EXTRN symbols aren't allowed. For 
example, this means that the assembly language HIGH and 
LOW operators can't be used with EXTRN symbols. 

Turbo Assembler and Turbo Pascal 
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Turbo Assembler (TASM) makes it easy to program routines in 
assembly language and interface them into your Turbo Pascal 
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programs. Turbo Assembler provides simplified segmentation 
and language support for Pascal programmers. 

The .MODEL directive specifies the memory model for an 
assembler module that uses simplified segmentation. For linking 
with Pascal programs, the .MODEL syntax looks like this: 

.MODEL XXXX, PASCAL 

xxxx is the memory model (usually this is large). 

Specifying the language PASCAL in the .MODEL directive tells 
Turbo Assembler that the arguments were pushed onto the stack 
from left to right, in the order they were encountered in the 
source statement that called the procedure. 

The PROC directive lets you define your parameters in the same 
order as they are defined in your Pascal program. If you are 
defining a function that returns a string, notice that the PROC 
directive has a RETURNS option that lets you access the tempo­
rary string pointer on the stack without affecting the number of 
parameter bytes added to the RET statement. 

Here's an example coded to use the .MODEL and PROC 
directives: 

.MODEL LARGE, PASCAL 

. CODE 
MyProc PROC FAR I : BYTE, J : BYTE RETURNS Result : DWORD 

PUBLIC MyProc 
LES DI, Result 
MOV AL, I 
MOV BL, J 

RET 

iget address of temporary string 
iget first parameter I 
iget second parameter J 

The Pascal function definition would look like this: 

function MyProc(I, J: Char): stringi externali 

For more information about interfacing Turbo Assembler with 
Turbo ,Pascal, refer to the Turbo Assembler User's Guide. 

Examples of assembly language routines 

The following code is an example of a unit that implements two 
assembly language string-handling routines. The UpperCase 
function converts all characters in a string to uppercase, and the 
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StringOf function returns a string of characters of a specified 
length. 

unit Stringeri 
interface 
function UpperCase(S: String): Stringi 
function StringOf(Ch: Chari Count: Byte): Stringi 
implementation 
{$L STRS} 
function UpperCasei externali 
function StringOfi externali 
end. 

The assembly language file that implements the UpperCase and 
StringOf routines is shown next. It must be assembled into a file 
called STRS.OBJ before the Stringer unit can be compiled. Note 
that the routines use the far call model because they are declared 
in the interface section of the unit. This example uses standard 
segmenta tion: 

CODE SEGMENT BYTE PUBLIC 

ASSUME CS:CODE 
PUBLIC UpperCase, StringOf iMake them known 

function UpperCase(S: String): String 

UpperRes EQU DWORD PTR [BP + 10] 
UpperStr EQU DWORD PTR [BP + 6] 

UpperCase PROC FAR 

PUSH BP iSave BP 
MOV BP, SP iSet up stack frame 
PUSH DS iSave DS 
LDS SI, Upperstr iLoad string address 
LES DI, Upperres iLoad result address 
CLD iForward string-ops 
LODSB iLoad string length 
STOSB iCOPY to result 
MOV CL, AL iString length to CX 
XOR CH, CH 
JCXZ U3 iSkip if empty string 

U1: LODSB iLoad character 
CMP AL, 'a' i8kip if not 'a' .. 'z' 
JB U2 
CMP AL, , z' 
JA U2 
SUB AL, 'a'-'A' iConvert to uppercase 

U2: STOSB iStore in result 
LOOP U1 iLoop for all characters 
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U3: POP 
POP 
RET 

DS 
BP 
4 

UpperCase ENDP 

jRestore DS 
jRestore BP 
jRemove parameter and return 

j procedure StringOf(var S: Stringi Ch: Chari Count: Byte} 

StrOfS EQU DWORD PTR [BP + 10] 
StrOfChar EQU BYTE PTR [BP + 8] 
StrOfCount EQU BYTE PTR [BP + 6] 

StringOf PROC FAR 

PUSH BP jSave BP 
MOV BP, SP jSet up stack frame 
LES DI, StrOfRes jLoad result address 
MOV AL, StrOfCount iLoad count 
CLD jForward string-ops 
STOSB jStore length 
MOV CL, AL jCount to CX 
XOR CH, CH 
MOV AL, StrOfChar iLoad character 
REP STOSB jStore string of characters 
POP BP jRestore BP 
RET 8 jRemove parameters and return 

StringOf ENDP 

CODE ENDS 

END 

To assemble the example and compile the unit, use the following 
commands: 

TASM STR5 
TPCW stringer 

Assembly language methods 

Method implementations written in assembly language can be 
linked with Turbo Pascal programs using the $L compiler 
directive and the external reserved word. The declaration of an 
external method in an object type is no different than that of a 
normal method; however, the implementation of the method lists 
only the method header followed by the reserved word external. 
In an assembly language source text, an @ is used instead of a 
period (.) to write qualified identifiers (the period already has a 
different meaning in assembly language and can't be part of an 
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identifier). For example, the Pascal identifier Rect.lnit is written as 
Rect@Init in assembly language. The @ syntax can be used to 
declare both PUBLIC and EXTRN identifiers. 

Inline machine code 

Inline statements 

284 

For very short assembly language subroutines, Turbo Pascal's 
inline statements and directives are very convenient. They let you 
insert machine code instructions directly into the program or unit 
text instead of through an object file. 

An inline statement consists of the reserved word inline followed 
by one or more inline elements, separated by slashes and enclosed 
in parentheses: 

inline(lO/$2345/Count + l/Data - Offset); 

Here's the syntax of an inline statement: 

inline statement ~I in line element TeD--
1----~01+-, -------' 

Each inline element consists of an optional size specifier, < or >, 
and a constant or a variable identifier, followed by zero or more 
offset specifiers (see the syntax that follows). An offset specifier 
consists of a + or a - followed by a constant. 

inline element 

Each inline element generates 1 byte or 1 word of code. The value 
is computed from the value of the first constant or the offset of the 
variable identifier, to which is added or subtracted the value of 
each of the constants that follow it. 

An Wine element generates 1 byte of code if it consists of con­
stants only and 'if its value is within the 8-bit range (0 .. 255). If the 
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Registers BP, SP, SS, and OS 
must be preserved by inline 

statements: all other registers 
can be modified. 

Inline directives 

value is outside the 8-bit range or if the inline element refers to a 
variable, 1 word of code is generated (least-significant byte first). 

The < and> operators can be used to override the automatic size 
selection we described earlier. If an inline element starts with a < 
operator, only the least-significant byte of the value is coded, even 
if it's a 16-bit value. If an inline element starts with a > operator, a 
word is always coded, even though the most-significant byte is O. 
For example, the statement 

inline«$1234/>$44) ; 

generates 3 bytes of code: $34, $44, $00. 

The value of a variable identifier in an inline element is the offset 
address of the variable within its base segment. The base segment 
of global variables-variables declared at the outermost level in a 
program or a unit-and typed constants is the data segment, 
which is accessible through the DS register. The base segment of 
local variables-variables declared within the current subpro­
gram-is the stack segment. In this case the variable offset is 
relative to the BP register, which automatically causes the stack 
segment to be selected. 

The following example of an inline statement generates machine 
code for storing a specified number of words of data in a specified 
variable. When called, procedure FillWord stores Count words of 
the value Data in memory, starting at the first byte occupied by 
Dest. 

procedure FillWord(var Dest; Count, Data: Word); 
begin 

inline ( 

end; 

$C4/$BE/Dest/ 
$8B/$8E/Count! 
$8B/$86/Data/ 
$FC/ 
$F3/$AB); 

{ LES DI,Dest[BP] } 
{ MOV CX,Count[BP] } 
{ MOV AX,Data[BP] } 
{ CLD } 
{ REP STOSW } 

Inline statements can be freely mixed with other statements 
throughout the statement part of a block. 

With inline directives, you can write procedures and functions 
that expand into a given sequence of machine code instructions 
whenever they are called. These are comparable to macros in 
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assembly language. The syntax for an inline directive is the same 
as that of an inline statement: 

inline directive -l inline statement ~ 

When a normal procedure or function is called (including one that 
contains inline statements), the compiler generates code that 
pushes the parameters (if any) onto the stack, and then generates 
a CALL instruction to call the procedure or function. However, 
when you call an inline procedure or function, the compiler 
generates code from the inline directive instead of the CALL. 
Here's a short example of two inline procedures: 

procedure Disablelnterruptsi inline($FA)i 
procedure Enablelnterruptsi inline($FB)i 

{ eLI } 
{ STI } 

When Disablelnterrupts is called, it generates 1 byte of code-a CLI 
instruction. 

Procedures and functions declared with inline directives can have 
parameters; however, the parameters can't be referred to symboli­
cally in the inline directive (other variables can, though). Also, 
because such procedures and functions are in fact macros, there is 
no automatic entry and exit code, nor should there be any return 
instruction. 

The following function multiplies two Integer values, producing a 
Longint result: 

function LongMul(X, Y: Integer): Longinti 
inline ( 

$5A/ 
$58/ 
$F7/$EA) i 

POP AX iPOP X } 
POP DX iPOP Y } 
lMUL DX iDX : AX = X * Y } 

Note the lack of entry and exit code and the missing return 
instruction. These aren't required, because the 4 bytes are inserted 
into the instruction stream when LongMul is called. 

Use inline directives for very short procedures and functions only 
(less than 10 bytes). 

Because of the macro-like nature of inline procedures and func­
tions, they can't be used as arguments to the @ operator and the 
Addr, Ofs, and Seg functions. 
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80486 processor 149 
87 environment variable 155 
@@ operator 79 
A (pointer) symbol 43, 56 
# (pound) character 19 
@operator 75 

with a variable 75 
with procedures and functions 75 

80x87 
emulation 29 
floating point model 28 
numeric coprocessor 149-157 
software emulation, selecting 28 

A 
$A compiler directive 249 
Abs function 130, 245 
absolute 

clause syntax 53 
expressions, built-in assembler 270 
variables 53 

actual parameters 82 
Addr function 132 
address 

factor 66 
functions 132 

address-of (@) operator 43,56, 75, 79 
alignment, data 249 
ancestor of an object type 34 
ancestors 34 
and operator 70, 180 
AnyFile constant 162 
apostrophes in character strings 19 
Append procedure 135, 137, 147 
Arc procedure 185 
Archive constant 162 
ArcTan function 130 

Index 

D 

arithmetic 
functions 130 

E 

operations precison rules 25 
operators 68 

array 
types 30, 222 
variables 55 

array-type constant syntax 60 
arrays 30, 55 

accessing elements in 31 
indexing multidimensional 55 
number of elements in 30 
of arrays 31 
valid index types in 30 
zero-based character 31, 61, 169, 171 

defined 31 
.ASM files 157 
asm statement 256 
assembler 

code 
in Turbo Pascal 255 
linked with Turbo Pascal 279 

declaration syntax 101 
assembly language 

80x87 emulation and 157 
call model 279 
inline 

directives 285 
statements 284 

interfacing programs with 280 
linking with Turbo Pascal 279-286 
overlays and 203 
statements 

multiple 256 
syntax 256-261 

Assign procedure 135, 136, 146 
Assignert procedure 144, 146 
Assigned function 132 

x 
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assignment 
compatibility 40, 48 

object type 82 
statement syntax 82 

automatic 
call model selection, overriding 236 
jump sizing, built-in assembler 258 
word alignment 249 

AX register 235, 286 

B 
$B compiler directive 71, 246 
bar constants 188 
Bar3D procedure 175, 185 
Bar procedure 185 
base type 43 
.BGlfiles 175 
binary 

arithmetic operators 68 
operands 65 
operators 25 

BIOS 142 
bit images 179 
BitBlt 

operations 180 
operators 188 

bitmapped fonts 178 
bitwise operators 69 
blanks, defined 15 
block 

defined 93 
scope 95 
subroutine 98 
syntax 93 

BlockRead procedure 135 
BlockWrite procedure 135 
Boolean 

data type 25, 218 
expression evaluation 246 

complete 70 
short-circuit 70 

operators 70 
boolean 

data types 25 
operators 26 
types 218 
variables 26 
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Borland Graphics Interface 175-189 
BP register 203, 241, 243 
brackets, in expressions 76, 77 
Break procedure 87, 130 
BufEnd variable 230 
buffer 

overlay 193 
loading and freeing up 194 
optimization algorithm 194 
probationary area 195 

text, size 230 
BufPtr pointer 230 
BufSize variable 230 
built-in assembler 

directives 255 
expressions 262-274 

classes 269-270 
operators 272-274 
Pascal expressions versus 262 
types 270-272 

instruction sizing 258-259 
opcodes 257-259 
operands 261 
procedures and functions 274 
registers, using 256 
reserved words 261 

BX register 235, 243 
Byte data type 25 
ByteBool data type 25, 218 

C 
call model 279 
calling conventions 233 

constructors and destructors 240 
methods 238 

calls, near and far 236 
case 

sensitivity of Turbo Pascal 16 
statement syntax 85 

CGA 175 
Char data type 26, 218 
character 

arrays 171 
pair special symbols 16 
pointer operators 71 
pointers 

characters arrays and 171 

Language Guide 



indexing 171 
string literals and 169 

strings 20 
ChDir procedure 135 
CheckBreak variable 145 
CheckEOF variable 145 
CheckSnow variable 145 
.CHR files 175 
Chr function 26, 130, 245 
Circle procedure 185 
circular unit references 121 
Clear Device procedure 185 
ClearViewPort procedure 185 
clipping constants 188 
Close procedure 135, 146, 148 
CloseGraph procedure 176, 185 
ClrEol procedure 144 
ClrScr procedure 144 
code segment 280 

procedures and functions in 279 
color constants 188 

text 145 
colors, maximum number of 189 
command-line parameters 133 
comments 20 

built-in assembler 256 
common types of integer types 25 
communication devices (COMI and COM2) 

141 
Comp data type 28, 151,221 
comparing 

character pointers 74 
packed strings 74 
pointers 74 
sets 74 
simple types 73 
strings 74 
values of real types 153 

compatibility 
assignment 40 
parameter type 110 

compiler 
directives 

$N29 
$P 111 
$A249 
$B 71,246 

Index 

defined 20 
$F 46, 99, 146, 198, 236 
$G257 
$1 137 
$L 279, 280, 283 
$L filename 100, 157 
$M 52,211 
$N 29, 69, 130, 150, 155, 257 
$0 197 

nonoverlay units and 202 
$R 39, 224 
$S52 
$T 48,75 
$X 20,31,43,54, 71 

optimization of code 245-251 
complete Boolean evaluation 70 
compound statement syntax 84 
Concatfunction 131 
concatenation 71 
conditional statement syntax 84 
console device (CON) 140 
CONST segment 279 
constant 

address expressions 59 
declaration part syntax 94 
declarations 21 
defined 11 
expressions 21 
parameters 109 
with an initial value 11 

constants 21 
array-type 60 
Dos unit 162 
folding 245 
Graph unit 188 
merging 246 
numeric, built-in assembler 263 
object-type 62 
pointer-type 63 
procedural-type 64 
record-type 62 
set-type 63 
simple-type 59 
string, built-in assembler 264 
string-type 60 
structured-type 60 
typed 58 
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WinDos unit 165 
constructor syntax 104 
constructors 37, 38, 222, 225 

calling conventions 240 
declaring 103 
defined 104 
error recovery 106 
virtual methods and 104 

Continue procedure 87, 130 
control 

characters 
defined 15 
embedding in strings 19 
in Crt unit 143 

string syntax diagram 20 
control characters 19 
Copy function 131 
Cos function 130 
CreateDir procedure 165 
creating objects 38 
Crt 

mode constants 145 
unit 128, 142 

control characters in 143 
editing keys in 143 
variables in 145 

CS register 243 
CSeg function 132 
CSEG segment 280 
current pointer 178 
CX register 243 

D 
data 

alignment 249 
internal formats 218-230 
ports 231 
segment 279, 280 

maximum size of 52 
data formats 218-230 
date and time procedures 

Dos unit 160 
WinDos unit 163 

DateTime type 163 
dead code eliminated 250 
debugging overlays 202 
Dec procedure 131 
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declaration part, defined 11 
declaring 

an object type 36 
methods 37 

Delay procedure 144 
Delete procedure 131 
DelLine procedure 144 
descendants 34 

of an object type 34 
designators 

field 56 
method 56 

destructor syntax 105 
destructors 104 

calling conventions 240 
declaring 103 
defined 104 

DetectGraph procedure 185 
devices 140-141 

communication (COMl and COM2) 141 
console (CON) 140 
DOS 140 
drivers 146 
handlers 243, 244 
line printer (LPT1, LPT2, LPT3) 141 
NUL 141 
text file 141 

DI register 243 
diagrams, syntax 14 
digit syntax diagram 15 
digits, defined 15 
direct 

memory access 230 
port access 231 

directives 
assembler, defined 259 
built-in assembler 255, 274, 275 
external 100 
far 98 
forward 99 
inline 101 
interrupt 99 
list of Turbo Pascal 17 
near 98 
private 17 
public 17 
standard 17 
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Directory constant 162 
directory-handling procedures and functions 

165 
DirectVideo variable 145 
disk status functions 

Dos unit 161 
WinDos unit 164 

DiskFree function 161, 164 
DiskSize function 161, 164 
dispatcher, RTL (run-time library) 239 
Dispose procedure 132,212,213,215 

extended syntax 224, 240 
constructor passed as parameter 104, 114 

disposU::tg of dynamic variables 212 
div operator 69 
DMT (dynamic method table) 

cache 228, 239 
entry count 228 

domain of object type 34 
DOS 

device handling 244 
devices 140 
environment 209 
error level 242 
exit code 241 
operating system routines 159 

Dos unit 127, 159-163 
types 163 

DosError variable 163, 166 
Dos Version function 162, 165 
double address-of (@@) operator 79 
Double data type 28, 151,220 
DrawPoly procedure 185 
driver constants 188 
drivers, graphics 175-177 
DS register 241, 243 
DS segment 280 
DSeg function 132 
DX register 235, 243 
dynamic 

allocation procedures and functions 132 
method calls 239 
method index 38 
method table 225 

cache 228 
entry count 228 

methods 38, 226 

Index 

E 

how differ from virtual methods 38 
overriding 38 

object instances 
allocation and disposal of 104, 240 

variables 43, 52, 56,211 
disposing of 212 

$E compiler directive 28 
editing keys in Crt unit 143 
eliminate dead code 250 
Ellipse procedure 185 
embedding control characters in strings 19 
empty set 42 
EMS memory, overlay files and 192, 198 
emulating the 80x87 29 
end-of-file character 140, 143 
end-of-line character 15 
entry code 240, 275 
enumerated 

constant's ordinality 27 
types 26, 219 

EnvCount function 161 
environment-handling functions 

Dos unit 161 
WinDos unit 165 

EnvStr function 161 
Eof function 135 
Eoln function 135 
Erase procedure 135 
error checking 

dynamic object allocation 106 
virtual method calls 224 

ErrorAddr variable 133, 242 
errors 

fatal, in OvrInit 200 
handling 180 
reporting 241 

ES register 243 
examples 

array type 31 
avoiding ambiguity using subrange types 28 
character strings 19 
constant expressions 21, 22 
constructor 38 
control characters in strings 19 
enumerated type 27 
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expressions 9 
function 6 
initializing virtual methods 38 
Mem arrays 230 
object-type declaration 34 
record type 32 
simple statements 8 
subrange type 27 
syntax diagram 14 
tokens 10 
variables 11 
variant part of a record 33 

Exclude procedure 133 
.EXE files 191 

building 250 
Exec procedure 161 
exit 

code 241, 275 
functions 240 
procedures 240, 241 

Exit procedure 130 
ExitCode variable 133, 242 
exiting a program 241 
ExitProc variable 241 
Exp function 130 
exponents 219 
expression syntax 66-68 
expressions 65-79 

absolute, built-in assembler 270 
built-in assembler 262-274 

classes 269-270 
elements of 263-268 
versus Pascal 262 

constant 21 
address 59 
standard functions permitted in 22 

defined 9 
elements of, built-in assembler 263 
order of evaluation 246 
relocation, built-in assembler 270 
types, built-in assembler 270 

Extended data type 28, 151, 152,220 
range arithmetic 152 
range of 150 

extended syntax 20,31,43 
external 

(reserved word) 283 
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declarations 100 
directive 100, 275 
procedures and functions 157, 279 

ExternProc 203 
EXTRN directive 280 

F 
$F compiler directive 46, 99, 146, 198, 236 
faAnyFile constant 166 
faArchive constant 166 
factor syntax 66 
faDirectory constant 166 
faHidden constant 166 
Fail procedure 107 
False predefined constant identifer 26 
far 

ca11236 
model 197 

forcing use of 241 
requirement 193 

directive 98 
faReadOnly constant 166 
faSysFile constant 166 
FAuxiliary constant 162 
fAuxiliary constant 166 
fa VolumeID constant 166 
FCarry constant 162 
fCarry constant 166 
fcDirectory constant 166 
fcExtension constant 166 
fcFileName constant 166 
fcWildcards constant 166 
FExpand function 161 
Fibonacci numbers 154 
fields 

designators syntax 56 
in record types 32 
list (of records) 32 
object 33 

scope 103 
record 55 

figures, graphics 179 
file See also files 

buffer 230 
handles 229 
input and output 136-139 
modes 229 
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types 42, 228 
file-handling procedures and functions 

Dos unit 161 
WinDos unit 164 

FileExpand function 164 
FileMode variable 133, 139 
FilePos function 135 
FileRec 

record 229 
type 163 

files 
access, read-only 139 
.ASM 157 
.BGI 175 
.CHR 175 
.EXE 191 

building 250 
functions for 135 
I/O 142 
.OBJ 279 
.OVR 191 
procedures for 135 
text 137 

layout 229 
typed 228 
types of 228 
untyped 139,228 

FileSearch function 164 
FileSize function 135 
FileSplit function 164 

source code of 173 
fill pattern constants 188 
FillChar procedure 133 
FillEllipse procedure 185 
FillPoly procedure 179, 185 
FindFirst procedure 161, 164 
finding the size of a given string 29 
FindNext procedure 161, 164 
fixed part of records 32 
floating-point 

calculations, type Real and 151 
code generation, switching 150 
numbers 28, 149 
numeric coprocessor (80x87) 29 
parameters 234 
software 29 

Index 

types 
Comp221 
Double 220 
Extended 220 
Singe 220 

FloodFill procedure 179, 185 
flow-control procedures 130 
Flush procedure 135 
fmClosed constant 162, 166, 229 
fmInOut constant 162, 166,229 
fmInput constant 162, 166, 229 
fmOutput constant 162, 166,229 
font constants 188 
fonts 

files 183 
stroked 175, 178 

for statement syntax 88 
Force Far Calls option 198 
formal 

parameter list syntax 108 
parameters 76, 82, 107 

forward 
declarations 99 
directive 99 

FOverflow constant 162 
fOverflow constant 166 
FParity constant 162 
£Parity constant 166 
Frac function 130 
free list 215 
FreeList variable 133 
FreeMem procedure 132,212,213,215 
FreeZero variable 133 
fsDirectory constant 166 
FSearch function 161 
fsExtension constant 166 
fsFileName constant 166 
FSign constant 162 
fSign constant 166 
fsPathName constant 166 
FSplit function 161 
function 

calls 76 
, extended syntax and 76 

syntax 76 
declarations 101-103 

assembler 100 
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external 100 
headings 102 
results 235 
returns, built-in assembler 275 
syntax 101 

functions 6, 97, See also procedures and 
functions 
address 132 
arithmetic 130 
calls 233 
directory-handling 165 
disk status 

Dos unit 161 
WinDos unit 164 

entry / exit code, built-in assembler 275 
environment-handling 

Dos unit 161 
WinDos unit 165 

far 236 
file-handling 

Dos unit 161 
WinDos unit 164 

graphics 185 
heap-error 106 
High 112 
Low 112 
miscellaneous 

Dos unit 162 
WinDos unit 165 

near 236 
nested 236 
ordinal 131 
OvrGetRetry 195 
parameters, built-in assembler 274 
pointer 132 
private 119 
program example 6 
SizeOf 112 
stack frame for, built-in assembler 275 
standard 129 

and constant expressions 22 
string 131 
transfer 130 

FZero constant 162 
fZero constant 166 
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G 
$G compiler directive 257 
GetArcCoords procedure 185 
GetArgCount function 165 
GetArgStr function 165 
GetAspectRatio procedure 185 
GetBkColor function 185 
GetCBreak procedure 162, 165 
GetColor function 185 
GetCurDir function 165 
GetDate procedure 160, 163 
GetDefaultPalette function 186, 189 
GetDir procedure 135 
GetDriverName function 186 
GetEnv function 161 
GetEnvVar function 165 
GetFAttr procedure 161, 164 
GetFillPattern procedure 186 
GetFillSettings procedure 186 
GetFTime procedure 160, 163 
GetGraphMode function 186 
GetImage procedure 175, 186 
GetIntVec procedure 160, 164 
GetLineSettings procedure 186 
GetMaxColor function 186 
GetMaxMode function 186 
GetMaxX function 186 
GetMax Y function 186 
GetMem procedure 56, 132,217 
GetModeN arne function 186 
GetModeRange procedure 186 
GetPalette procedure 186, 189 
GetPaletteSize function 186 
GetPixel function 180, 186 
GetTextSettings procedure 179, 186 
GetTime procedure 160, 163 
GetVerify procedure 162, 165 
GetViewSettings procedure 186 
GetX function 186 
Get Y function 186 
goto statement syntax 83 
GotoXYprocedure 144 
Graph3 unit 128 
Graph unit 128, 175, 199 

bit images in 179 
colors 180 
constants 188 
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error handling 180 
figures and styles in 179 
heap management routines 183 
paging 180 
procedures 185 
sample program 181, 182 
text in 178 
types 189 
variables 189 
viewports in 179 

GraphDefaults procedure 186 
GraphDriver variable, IBM 8514 and 176 
GraphErrorMsg function 186 
GraphFreeMem procedure 183 
GraphFreeMemPtr variable 189 
GraphGetMem procedure 183 
GraphGetMemPtr variable 189 
graphics 

Close Graph 176 
current pointer in 178 
drivers 175 
figures and styles 179 
InitGraph in 176 
mode constants 188 
sample program 181, 182 
using 175-189 

GraphResult errors 188 
GraphResult function 180, 186 
grXXXX constants 188 

H 
Halt procedure 130,241 
handles, file 229 
hardware, interrupts 243 
heading, program 5 
heap 

error function 106, 217 
management 

allocating 211, 212, 215, 217 
deallocating 212 
fragmenting 211 
free list 215 
map 210 
routines 183 

manager 211-218 
managing 211-218 

HeapEnd variable 133 

Index 

HeapError variable 133,217 
HeapOrg variable 133,211,212 
HeapPtr variable 133,211 
hex digits 15 
hexadecimal 

constants 18 
numbers 19 

Hi function 133, 245 
Hidden constant 162 
high 

bounds of index type of an array, finding 31 
resolution graphics 176 

High function 24,31, 112, 131 
highest value in a range, finding 24 
HighVideo procedure 144 
host type 27 

$1 compiler directive 137 
I/O 

devices 146 
error-checking 137 
files 142 
redirection 142 

IBM 8514 175 
driver support 176-177 
GraphDriver variable and 176 
InitGraph procedure and 176 
modes 176 
SetRGBPalette and 177 

identifiers 
as labels 19 
defined 17 
examples 18 
how identified in manuals 18 
length of 17 
qualified 17 
restrictions on naming 17 
scope of 23 

if statement syntax 84 
ImageSize function 186 
immediate values, built-in assembler 269 
implementation part of a unit 119, 236 
implementing methods 37 
in operator 73, 75 
Inc procedure 131 
Include procedure 133 
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index 
dynamic method 38 
syntax 55 
types valid in arrays 30 

indexes in arrays 31 
indexing character pointers 171 
indirect unit references 120 
infinite loop See loop, infinite 
inheritance, rules of 33 
inherited (reserved word) 41 
InitGraph procedure 176, 186 
initialization part of a unit 120 
initialized variables 58 

in assembler 279 
initializing virtual methods 37, 38 
inline 

directives 101,285 
statements 284 

InOutRes variable 133 
input and output 

file 136-139 
with Crt unit 142-145 

Input variable 133 
Insert procedure 131 
InsLine procedure 144 
InstallUserDriver function 186 
InstallUserFont function 186 
instances 

dynamic object 39 
of an object type 38 

instantiating objects 38 
instruction opcodes, built-in assembler 257 
Int function 130 
Integer data type 25, 218 
integer types 25 
interface part of a unit 119, 236 
internal data formats 218-230 
interrupt 

directive 243 
directives 99 
handlers 243 

units and 202 
handling routines 243 
procedures, writing 243 
service routines (ISRs) 243 
support procedures 

Dos unit 160 
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WinDos unit 164 
Intr procedure 160, 164 
IOResult function 135 
IP flag 243 
ISRs (interrupt service routines) 243 

J 
jump sizing, automatic, built-in assembler 258 
justify text constants 188 

K 
Keep procedure 161 
keyboard status, testing 144 
KeyPressed function 144 

L 
$L compiler directive 279, 280, 283 
$L filename compiler directive 1 ~O, 157 
label 

declaration part syntax 93 
syntax 19 

labels 
built-in assembler 257 
defined 19 

language overview 5 
LastMode variable 145 
l~te binding 37 
left 

brace special symbol 16 
bracket special symbol 16 

length 
character strings 20 
identifiers 17 
program lines 20 
record 230 
string-type value, finding 29 

Length function 131,245 
letters, defined 15 
line 

input editing keys 143 
printer devices (LPTl, LPT2, LPT3) 141 
style constants 188 

Line procedure 186 
LineRel procedure 186 
lines, maxiumum length of 20 
LineTo procedure 186 
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linking 
smart 250 
Turbo Pascal with assembler code 279-286 

Ln function 130 
Lo function 133, 245 
local labels 257 
logical operators 69 
LongBool data type 25, 218 
Longint data type 25 
loop, infinite See infinite loop 
low bounds of index type of an array, finding 

31 
Low function 24,31, 112, 131 
lowest value in a range, finding 24 
LowVideo procedure 144 
LPT devices 141 

M 
$M compiler directive 52, 211 
machine code in program 284 
Mark procedure 212 
MaxAvail function 132 
Mem array 230 
MernA vail function 132 
MemL array 230 
memory 

allocation 199 
map 210 
model 281 
references, built-in assembler 269 
usage, Turbo Pascal and 209 

Mem W array 230 
method 

declarations 103-107 
designator 56 

syntax of 40 
methods 33-42, 103-107 

activating 40 
assembly language 283 
calling 

conventions 238 
dynamic 239 

declaring 37, 103 
defined 33 
designators 56 
dynamic 38, 226, 239 

how differ from virtual methods 38 

Index 

overriding 38 
external 283 
forward declaration 37 
identifiers, qualified 37 
implementation 37, 103 
making them virtual 37 
overriding inherited 37 
parameters 

Self 103 
defined 238 

type compatibility 110 
qualifying method identifiers 37 
static 37 
virtual 37 

calling 238 
error checking 224 

initializing 38 
miscellaneous procedures and functions 

Dos unit 162 
WinDos unit 165 

MkDir procedure 136 
mod operator 69 
Mode field 229 
.MODEL directive 281 
modular programming 118 
Move procedure 133 
MoveRel procedure 187 
MoveTo procedure 187 
MsDos procedure 160, 164 

N 
$N compiler directive 28, 29, 69, 130, 150, 155, 

257 
Name field 230 
near 

call 236 
directive 98 

nested procedures and functions 46, 236 
network file access, read-only 139 
New procedure 43, 56, 132,211,217 

extended syntax 224 
constructor passed as parameter 104, 114, 
240 

used as function 115 
nil (reserved word) 43,56 
NormVideo procedure 144 
NoSound procedure 144 
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not operator 70, 180 
NUL device 141 
NULL character 167 
null strings 19,29 
null-terminated strings 31, 128, 167-174 

defined 167 
NULL character 167 
pointers and 169 
standard procedures and 173 

number constants 18 
numbers 

counting 18 
hexadecimal 19 
integer 19 
real 18 

numeric 
constants, built-in assembler 263 
coprocessor 

o 

detecting 155 
emulating, assembly language and 157 
evaluation stack 153 
using 149-157 

$0 compiler directive 197 
nonoverlay units and 202 

.OBJ files 279 
object 

ancestor 34 
component designators 56 
descendant 34 
files 279 
scope 96 

object-type 
assignments 82 
constants 62 

object types 33-42, See also objects 
components 33 
declaring 36 
domain 34 
fields 33 
instances 38 
methods 33 
rules of inheritance 33 
scope 
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in private sections 36 
in public sections 36 

of identifier in 36 
objects 

ancestor 34 
constructors 222, 225 

declaring 103 
defined 104 
error recovery 106 
virtual methods and 104 

creating 38 
destructors 104 

declaring 103 
defined 104 

domain of 34 
dynamic 

instances 39 
allocation and disposal of 104, 240 

'method table 225 
fields 

designators 56 
scope 36, 103 

files in $L directive 280 
instantiating 38 
internal data format 222 
methods, scope 36 
pointers to 39 
polymorphic 40, 110 
virtual 

method table 223 
field 222 
pointer initialization 225 

methods 
call error checking 224 
calling 238 

Odd function 131, 245 
Ofs function 132 
open 

parameters 108, 111 
array 32, 108, 113 
how passed 235 
string 3D, 108, 111 

OpenString identifier 29, 108 
operands 65 

built-in assembler 261 
operators 65-75 

@@ (double address-of) 79 
@ (address-of) 43, 56, 75 
address-of (@) 79 
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and 70, 180 
arithmetic 68 
binary arithmetic 68 
bitwise 69 
Boolean 70 
built-in assembler, defined 273 
character pointer 71 
div 69 
logical 69 
mod 69 
not 70, 180 
or 70, 180 
precedence of 65, 69 

built-in assembler 272 
relational 73 
set 72 
shl70 
shr 70 
string 71 
structure member selector 268 
types of 68 
unary arithmetic 69 
xor 70, 180 

optimization of code 245-251 
or operator 70, 180 
Ord function 24, 130, 245 

applied to an enumerated-type value 27 
used to return a Char value 26 

order of evaluation 248 
ordering between two string-type values 29 
ordinal 

procedures and functions 131 
types 24-28 

predefined 25 
user-defined 25 

ordinality 
defined 24 
enumerated constant 27 
finding enumerated type's value 27 
returning 24 
returning Char values 26 

Output variable 133 
OutText procedure 179, 187 
OutTextXY procedure 179, 187 
overlaid 

code, storing 211 
initialization code 201 

Index 

programs 
designing 197-204 
writing 192 

routines, calling via procedure pointers 202 
overlay manager, initializing 198 
Overlay unit 128, 192 

procedures and functions 195 
overlays 191-204 

assembly language routines and 203 
BP register and 203 
buffer 193 

loading and freeing up 194 
optimization algorithm 194 
probationary area 195 
size 211 

cautions 202 
debugging 202 
defined 191 
in .EXE files 205 
installing a read function 204 
loading 

into expanded memory 198 
into memory 191 

using 191-206 
overriding 

dynamic methods 38 
inherited methods 37 

overview of Turbo Pascal language 5 
.OVR files 191 
OvrClearBuf procedure 196 
OvrCodeList variable 133 
OvrDebugPtr variable 134 
OvrDosHandle variable 134 
OvrEmsHandle variable 134 
OvrFileMode variable 196 
OvrGetBuf function 196 
OvrGetRetry function 195, 196 
OvrHeapEnd variable 134 
OvrHeapOrg variable 134 
OvrHeapPtr variable 134 
OvrHeapSize variable 134 
OvrInit procedure 196 
OvrInitEMS procedure 196, 199 
OvrLoadCount variable 196 
OvrLoadList variable 134 
OvrReadBuf variable 196, 204 
OvrResult variable 196 
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OvrSeg variable 204 
OvrSetBuf procedure 196, 199,211 
OvrSetRetry procedure 195, 196 
OvrTrapCount variable 196 

p 
$P compiler directive 111 
Pack procedure 130 
packed 

reserved word 30 
string type 31 
strings, comparing 74 

PackTime procedure 160, 163 
palette manipulation routines 177 
ParamCount function 133 
parameters 107-114 

actual 82 
command-line 133 
constant 109 
floating-point 234 
formal 82, 107 
open 111 

array 108, 113 
string 108, 111 

passing 83, 233-235 
Self 103 

defined 238 
type compatibility 110 
types of 108 
untyped 110 
value 108, 234 
variable 109 
virtual method 240 

ParamStr function 133 
Pascal strings 168 
passing parameters 233-235 

by reference 233 
by value 233 

passing string variables of varying sizes 30 
PChar data type 43 
Pi function 130 
PieSlice procedure 187 
pointer (A) symbol 43, 56 
pointer and address functions 132 
Pointer data type 43, 221 
pointer-type constants.63 
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pointers 
assignment-compatibility of 40 
comparing 74 
to objects 39 
types 43 
values 56 
variables 56 

polymorphism 
parameter type compatibility 110 
pointer assignment 40 

Port array 231 
PortW array 231 
Pos function 131 
pound (#) character 19 
precedence of operators 65, 69 
precision 

of real-type values 28 
rules of arithmetic 25 

Pred function 24, 131,245 
predecessor of a value, returning 24 
PrefixSeg variable 134, 209 
Printer unit 128, 141 
printing from a program 141 
private 

component sections 36 
directive 17 
procedures and functions 119 

Private field 230 
probationary area, overlay buffer 195 
PROC directive 281 
procedural 

types 44-46 
in expressions 78-79 
type compatibility of 46 
variable typecasts and 58 

values 44 
procedural-type constants 64 
procedure 

call models 98 
declaration syntax 97 
declarations 97-101 

assembler 100 
external 100 
forward 99 
inline 101 
near and far 98 

headings 98 
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statements 82 
procedure and function declaration part 94 
procedures 6, 97, See also procedures and 

functions 
date and time 

Dos unit 160 
WinDos unit 163 

directory-handling 165 
Dispose, extended syntax 224, 240 

constructor passed as parameter 104, 114 
entry / exit code, built-in assembler 275 
external 157 
far 236 
file-handling 

Dos unit 161 
WinDos unit 164 

flow control 130 
graphics 185 
interrupt 99 

support 
Dos unit 160 
WinDos unit 164 

miscellaneous 
Dos unit 162 
WinDos unit 165 

near 236 
nested 236 
New 

extended syntax 224 
constructor passed as parameter 104, 
114,240 

used as function 115 
ordinal 131 
OvrSetRetry 195 
parameters, built-in assembler 274 
pointers, calling overlaid routines 202 
process-handling procedures 161 
stack frame, built-in assembler 275 
standard 129 
string 131 

procedures and functions See also procedures; 
functions 
nested 46 
written in assembler 279 

call model 279 
process-handling procedures 161 

Index 

program 
block 5 
comments 20 
defined 5 
heading 5, 117 
lines, maximum length of 20 
parameters 117 
syntax 117 
termination 241 

Program Segment Prefix (PSP) 209 
Ptr function 43, 56, 132, 245 
public 

component sections 36 
directive 17 
procedures and functions 119 

PUBLIC directives 279 
PutImage procedure 175, 180, 187 
PutPixel procedure 180, 187 

Q 
qualified 

identifiers 17 
method 

activating a 41 
designator 41 
identifiers 37, 56, 75, 103 

qualifier syntax 54 

R 
$R compiler directive 39, 224 

virtual method checking 224 
Random function 133 
Randomize procedure 133 
RandSeed variable 134 
range 

checking 172 
compile time 249 

finding higest value in 24 
finding lowest value in 24 
of real-type values 28 

read-only file access 139 
Read procedure, textfiles 136, 137 
reading syntax diagrams 14 
ReadKey function 144 
Readln procedure 136 
ReadOnly constant 162 

301 



real 
data types 28 
numbers 28, 149,219 

Real data type 28 
real-type operations 

80x87 floating type 28 
software floating point 28 

record 
length 230 
scope 95 
types 32 

record-type constant syntax 62 
records 32, 55, 62, 222 

fields 55 
variant part 32 

Rec5ize field 230 
Rectangle procedure 187 
recursive loop See recursive loop 
redeclaration of variables 51 
redirection 142 
reentrant code 243, 244 
register-saving conventions 241 
RegisterBGldriver function 176, 183, 187,202 
RegisterBGIfont function 183, 187, 202 
registers 

and inline statements 285 
AX 235, 286 
BP 241,243 

overlays and 203 
built-in assembler 265, 269 
BX235,243 
C5243 
CX243 
DI243 
D5241,243 
DX235,243 
E5243 
51243 
5P241 
55241 
use, built-in assembler 256 
using 235,241,243 

Registers type 163 
relational operators 73-75 
Release procedure 212 
relocation expressions, built-in assembler 270 
RemoveDir procedure 165 
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Rename procedure 136 
repeat statement syntax 87 
repetitive statement syntax 87 
reserved words 16 

built-in assembler 261 
defined 16 
external 283 
how identified in manuals 16 
list of 16 

Reset procedure 136, 147 
RestoreCrtMode procedure 176, 187 
RET instruction, built-in assembler 258 
RETF instruction, built-in assembler 258 
RETN instruction, built-in assembler 258 
return character, defined 15 
returning 

Char values 26 
the ordinality of a value 24 
the predecessor of a value 24 
the successor of a value 24 

Rewrite procedure 136, 147 
right 

brace special symbol 16 
bracket special symbol 1 ~ 

RmDir procedure 136 
Round function 130, 245 
round-off errors, minimizing 152 
rules 

governing boolean variables 26 
of inheritance 33 
of scope 95-96 

run-time 
errors 241, See also the Programmer's Reference 
library overview 127-128 

RunError procedure 130 

5 
$5 compiler directive 52 
5aveIntXXXXX variables 134 
scale factor syntax diagram 18 
scope 

block 95 
in object types 36 
object 96 
record 95 
rules of 95, 95-96 
type identifiers 23 
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unit 96 
screen 

mode control 142 
output operations 142 

SearchRec type 163 
Sector procedure 187 
Seek procedure 136, 137 
SeekEof function 136 
SeekEoln function 136 
segment definitions 280 
segments 279 
SegXXXX variables 134 
SelectorInc variable 134 
Self parameter 40, 41, 103, 240 

defined 238 
separating tokens 15 
separators, defined 15 
Seq function 132 
set See also sets 

constructors 66 
syntax 76 

membership testing 75 
operators 72 
types 42, 221 

set-type constants 63 
SetActivePage procedure 187 
SetAllPalette procedure 187, 189 
SetAspectRatio procedure 187 
SetBkColor procedure 187 
SetCBreak procedure 162, 165 
SetColor procedure 187 
SetCurDir procedure 165 
SetDate procedure 160, 163 
SetFAttr procedure 161, 164 
SetFillPattem procedure 179, 187 
SetFillStyle procedure 179, 187 
SetFTime procedure 160, 163 
SetGraphBufSize procedure 183, 187 
,SetGraphMode procedure 176, 187 
SetIntVec procedure 160, 164 
SetLineStyle procedure 179, 187 
SetPalette procedure 187 
SetRGBPalette procedure 177, 187 

IBM 8514 and 177 
sets See also set 

comparing 74 
small 248 

Index 

SetTextBuf procedure 136 
SetTextJustify procedure 179, 187 
SetTextStyle procedure 179, 187 
SetTime procedure 160, 164 
SetUserCharSize procedure 179, 187 
SetVerify procedure 162, 165 
SetViewPort procedure 187 
SetVisualPage procedure 187 
SetWriteMode procedure 187 
Shift instructions faster than multiply or divide 

249 
shl operator 70 
short-circuit Boolean evaluation 70, 246 
Shortint data type 25 
shr operator 70 
SI register 243 
signed number syntax diagram 18 
significand 219 
simple 

expression syntax 67 
statement syntax 81 
types 23-29 

comparing 73 
simple-type constants 59 
Sin function 131 
single character special symbols 16 
Single data type 28, 151,220 
size 

of a given string, finding 29 
of overlay buffer 211 
of structured types, maximum 30 
of text file buffer 230 

SizeOf function 112, 133 
small sets 248 
smart linking 250 
software 

floating-point 
model 28 
restrictions 29 

interrupts 243 
sound operations 

NoSound 144 
Sound 144 

Sound procedure 144 
SP register 241 
space characters 15 
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special symbols 
built-in assembler 265 
character pairs listed 16 
single characters listed 16 

SPtr function 132 
Sqr function 131 
Sqrt function 131 
SS register 241 
SSeg function 132 
stack 

80x87153 
frame, built-in assembler use of 275 
overflow 52 
passing parameters and the 233 
pointer 210 
segment 52, 210 

StackLimit variable 134 
standard 

directives 17 
functions 129 
procedure and function 

defined 129 
procedure or function used as a procedural value 

46 
procedures 129 
units, list of 127 

statement part syntax 94 
statements 81, 81~92 

assignment 82 
case 85 
compound 84 
conditional 84 
for 88 
goto 83 
if 84 
procedure 82 
repeat 87 
repetitive 87 
simple 81 
structured 83 
while 87 
with 90 

static methods 37 
storing 

null-terminated strings 31 
overlaid code 211 

Str procedure 131 
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StrCat function 168 
StrComp function 168 
StrCopy function 168 
StrDispose function 168 
StrECopy function 168 
Str End function 168 
StrIComp function 168 
string See also strings 

constants, built-in assembler 264 
functions 131 
literals, assigning to PChar 169 
operator 71 
procedures 131 
type 

default size 29 
ordering between two values 29 
packed 31 

typed, constants 60 
types 29, 221 
variables 55 

passing 30 
strings See also string 

character 19 
length of 20 

comparing 74 
concatenating 71 
coverting 168 
embedding control characters in 19 
length byte 221 
maximum length of 221 
null 19,29 
null-terminated 31, 128, 167-174 
Pascal 168 

Strings unit 128, 167 
functions in 167 
using the 167 

StrLCat function 168 
StrLComp function 168 
StrLCopy function 168 
Str Len function 168 
StrLIComp function 168 
StrLower function 168 
StrMove function 168 
StrNew function 168 
stroked fonts 175, 178 
StrPas function 168 
StrPCopy function 168 
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StrPos function 168 
StrRScan function 168 
StrScan function 169 
structure member selector operator 268 
structured 

statement syntax 83 
types 30, 30-42 

structured-type constants 60 
StrUpper function 169 
styles, graphics 179 
subrange type 27 
subroutine block 98 
Succ function 24, 131,245 
successor of a value, returning 24 
Swap function 133, 245 
SwapVectors procedure 161 
symbols 15 

built-in assembler 265-268 
invalid, built-in assembler 266 
list of special 16 
reserved, built-in assembler 265 
scope access, built-in assembler 268 
special, built-in assembler 265 

syntax diagrams, reading 14 
SysFile constant 162 
System unit 117, 127, 155 

floating-point routines 150 

T 
$T compiler directive 48, 75 
tag field 

(of records) 32 
identifier 33 

TDateTime type 166 
term syntax 67 
terminating a program 241 
Test8087 variable 134, 156 
testing 

keyboard status 144 
set membership 75 

text 178 
files 137 

buffer 230 
device drivers 146 
devices 141 

text color constants 145 
TextAttr variable 145 

Index 

TextBackground procedure 144 
TextColor procedure 144 
TextHeight function 187 
TextMode procedure 144 
TextRec 

record 229 
type 163 

TextWidth function 187 
TFileRec type 166 
tokens 

categories of 15 
defined 10, 15 
examples of 10 
separating 15 

transfer functions 130 
trapping interrupts 243 
TRegisters type 166 
True predefined constant identifier 26 
Trunc function 130, 245 
Truncate procedure 136 
TSearchRec type 166 
TTextRec 

record 146 
type 166 

Turb03 unit 128 
Turbo Assembler 280 

80x87 emulation and 157 
Turbo Pascal language overview 5-14 
TURBO.TPL (run-time library) 127 
type See also types 

declaration 23 
declaration part syntax 94 
defined 10 
identifier 23 

type-checking, built in assembler 270 
typecasting integer-type values 25 
typecasts 

value 77 
variable 57 

typed 
constant 

defined 11 
syntax 58 

files 228 
TypeOf function 133 
types 23-50 

arra y 30, 222 
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Boolean 218 
boolean 25 
Byte 25 
ByteBool218 
Char 26,218 
Comp 24,151 
compatibility 47 
compatible 46 
declaration part 49 
Double 24, 151 
enumerated 26, 219 
Extended 24, 151 
file 42, 228 
floating-point 28, 151,219 

Comp 221 
comparing values of 153 
Double 220 
Extended 220 
Single 220 

Graph unit 189 
host 27 
identical 46 
identity 46 
Integer 25, 218 
integer 

converting through typecasting 25 
format of 25 
range of 25 

LongBool 25, 218 
Longint 25 
major classes 23 
object 33-42 

declaring 34 
ordinal 24-28 

characteristics of 24 
predefined 25 
user-defined 25 

packed string 31 
PChar 43 
Pointer 43,221 
procedural 44, 44-46, 78 
Real 24 
real 28 

numbers 219 
record 32, 222 
set 42,221 
Shortint 25 
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simple 23-29 
Single 24, 151 
string 29,221 
structured 30-42 
subrange 27 
Word 25 
WordBool25,218 

unary 
arithmetic operators 69 
operands 65 

unit syntax 118 
units 118-124 

80x87 coprocessor and 155 
circular references 121 
Crt 128, 142 
defined 13 
Dos 127, 159-163 
Graph 128, 175 
Graph3128 
heading 118 
identifiers 17 
implementation part 119 
indirect references 120 
initialization 

code 201 
part 120 

interface part 119 
nonoverlay 202 
Overlay 128, 192 
overlays and 193 
Printer 128, 141 
reasons to use 13 
scope of 96 
standard, list of 127 
Strings 128, 167 
System 127 
Turbo3128 
uses clause 117 
version number 121 
WinDos 127, 163-166 

Unpack procedure 130 
UnpackTime procedure 160, 164 
unsigned 

constant syntax 66 
integer syntax diagram 18 
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number syntax diagram 18 
real syntax diagram 18 

untyped 
files 139,228 
parameters 110 

UpCase function 133 
UserData field 229 
uses clause 13, 117 

v 
Val procedure 131 
value 

parameters 108, 234 
typecast syntax 77 

var 
declaration section 251 
parameters 109, 234 

and the built-in assembler 267 
variable See also variables 

declaration part syntax 94 
declaration syntax 51 
defined 10 
parameters 109 
reference 

qualifiers 54 
syntax 54 

typecasts 57 
and procedural types 58 

variables 51-64 
absolute 53 
array 55 
declarations 51 
dynamic 43, 56, 211 

disposing of 212 
FileMode 139 
global 52 
Graph unit 189 
in System unit 133 

initialized 133 
initialized in assembler 279 
initializing 58 
local 52 
parameters 234 
pointer 56 
record 55 

Index 

references 53 
string 55 

variant part of records 32 
VGA emulated modes 176 
video memory 142 
viewports 179 
virtual 

directive 37 
methods 37 

calling 238 
error checking 224 

initializing 38 
parameter 240 
table 223 

field 222 
pointer initialization 225 

VolumeID constant 162 

w 
WhereX function 145 
Where Y function 145 
while statement syntax 87 
WindMin variable 145 
WinD os unit 127, 163-166 

directory-handling procedures and functions 
165 

Window procedure 142, 144 
windows 142 
with statement syntax 90 
word alignment, automatic 249 
Word data type 25 
WordBool data type 25, 218 
Write procedure 136 
Writeln procedure 136 

80x87 coprocessor and 155 
writing control characters 143 

x 
$X compiler directive 20,31,43,54, 71 
xor operator 70, 180 

z 
zero-based character arrays 61, 169, 171 
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